
DECnet
Digital Network Architecture
(Phase IV)

Network Virtual Terminal
Command Terminal Protocol

DECnet
Digital Network Architecture
(Phase IV)

Network Virtual Terminal
Command Terminal Protocol
Order No. AA-DY88A-TK

December 1984

This document describes the Network Command Terminal services, which pro-
vide the function and protocol for terminal handling in distributed Digital systems.
The Network Command Terminal services is part of the Terminal Software Archi-
tecture (TSA) - and TSA is part of the Digital Network Architecture.

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

VERSION: 2.0

To order additional copies of this document, contact your local
Digital Equipment Corporation Sales Office.

digital equipment corporation maynard, massachusetts

AA-DY88A-TK

First Printing, December 1984

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibil-
ity for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

Copyright @ 1984 by Digital Equipment Corporation

The postage-prepaid Reader's Comments form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECmate
DECnet
DECUS
DECwriter
DIBOL

[nlnc

MASSBUS
PDP
PIOS
Professional
Rainbow
RSTS
RSX

RT
UNIBUS
V AX
VAXcluster
VMS
VT
Work Processor

CONTENTS

INTRODUCTION . 4
Relation to Digital's Network Architecture 4
Relation to Digital's Terminal Software

. Architecture 4
Definition of Character Set 4
Requirements. Goals. and Non-goals 5

. NETWORK COMMAND TERMINAL OVERVIEW 7
Host Terminal Interface 8
Writing Characters 8
Reading Characters 9
Out-of-band Input 9
Writing Characteristics 9
Reading Characteristics 9

Server Terminal Interface 9
. Echoing 10

Type-ahead 10
Input Editing 10
Output Control 10
Out-of-band Input 10
Quoting 10
Output/Echo Synchronization 11

Multi-character Input Tokens 11
Escape Sequences 11
ADataFlowModel 11

Pre-input Process 12
Input Process 14
Input Process/Host Terminal Interface
Interaction 15
Output Procedure 15
Output Process 16
Synchronization 16

INTERFACES . 18
Host Terminal Interface 18

Reading Normal Characters 18
Reading Out-of-band Characters 24
Writing Characters 24
Control and Status Functions 26

. Reading and Writing Characteristics 27
Server ~erminal Interface 29
Quoting 29
Output Control 29
Input Editing 29
Redisplay Input 30
Delete Character 30
Deleteword 30
Clear Input 30
Clear Type-ahead 30

Terminal Characteristics 31
Terminationset 34 . OPERATION 35
Interfaces and Protocols 36
Host/'Server Division of Labor 36
Datachannels 36

. Protocol Message Overview 37

. General Message Processing 37 Protocol Errors 38 Initialization 38 Characteristics Management 38 Read Request Processing 39 IssuingtheRead 39 Unreadinq 39 Position Modeling 40 Readcompletion 40 Input Editing 40 Distributed Input Editing 41
. . . . Selecting Distributed Input ~diting 41 Other Input Processing 42 Input Sscape Sequences 42 Raising Input 43 Out-of-band Processing 43 Control-V 43 Control-X 43 Control-0 43 Errors on Input 44 Write Request Processing 44 Other Output Processing 45 Output Discard State Handling 45

Locking 46 Output Escape Sequences -17 Additional Status and Control Operation 47
Reading and Writing Characteristics 47 Clearing Input 48 Input Character Count Handling 48 Foundation Services Interface Events 48 Protocol Evolution 49

Network Command Terminal Protocol Messages . . . 49 General Message Format 51 Initiate (H <.. > S) 52 Start Read (H ... > S) 54 ReadData (H<... S) 57 Out-of-Band (H <--.. S) 58
Unread (H ... > S) 59
Clear Input (H... > S) 59
Write (H... > S) 59 Write Completion (H <... S) 61 Discard State (H <... S) 62

. Read Characteristics (H ... > S) 62 Characteristics (H <.. > S) 63 Check Input (H ... > S) 64 Input Count (H <... S) 64 Input State (H <... S) 64 Reserved for VMS 64 Reserved for VMS 65 Reserved for VMS 65 Selector Values for Characteristics 65
Foundation-maintained Characteristics 66
Handler-Maintained Characteristics 68
CHARACTER-ATTRIBUTES Compound Characteristic 69

APPENDIX A Escape Sequence Recognition ~lgorithm

FIGURES

2-1 Distributed Common Terminal Services Model 7
2-2 Refined Common Terminal Services Model 12
4-1 Structure of Distributed Terminal Handler 3 5

1.0 INTRODUCTION

This specification describes a model for communication between
terminal-handling subsystems and operating systems in a communications
network. The integration of this communication with other aspects of
terminal operation derives from the Digital Terminal Software
Architecture.

Systems in which this model could be implemented include, but are not
necessarily limited to, intelligent terminals, host systems, front end
systems, and terminal concentrators.

This specification defines

o The services (interface functions or primitive operations)
and semantics (but not the syntax) of the services provided
by this model for terminal handling by ~igital's Terminal
Software Architecture

o The communication protocol (both syntax and semantics) used
by this model to provide the defined services

This document consists of four major sections:

1. A description of requirements and goals

2. A "black-box" model that identifies important interfaces

3. An interface description

4. A protocol model that defines messages and the operation of
the modules that (a) provide the interfaces and (b) send and
receive the messages

1.1 Relation to Digital's Network Architecture

The remote command terminal architecture is a component of the network
application layer of Digital's Network Architecture.

1 . 2 Relation to Digital's Terminal Software Architecture

The remote command terminal architecture is a component of the mode
layer of Digital's Terminal Software Architecture.

1.3 Definition of Character Set

This specification is intended for use with Digital's 8-bit coded
character set. The term "character" means an 8-bit value from this
character set. This character set defines the names of characters
referred to in this specification (e.g., BEL).

1.4 Requirements, Goals, and Non-goals

Requirements are those attributes that the model described herein must
have. The requirements of the remote command terminal architecture
are:

o LOGON. A person using one of a variety of terminals can log
on to any Digital system (specifically, RSTS/E, RSX-11M, IAS,
TOPS-10, TOPS-20, or VMS), give operating system level
commands to the system, receive system responses, and
communicate with all programs that are run under the
operating system provided that a path exists between the
terminal and host consisting of communication links and
DECnet systems.

o STANDARDS. This model adheres to any previously defined
corporate terminal architecture standards.

o MODULARITY. Terminal functions that can be classified
together (e.g., input line editing) are either handled
completely by the model or handled completely outside the
model.

o SIMPLICITY. The implementation of this model in hosts,
communications processors, terminal concentrators, and
terminals is sufficiently simple both to be understood by a
wide variety of Digital developers and support personnel and
to be contained in a reasonable amount of memory.

o REASONABLE PERFORMANCE. The performance of products adhering
to this model can be made sufficiently good that users
(people and programs) find it acceptable.

o EVOLUTION. This model allows future modifications.

o FLEXIBILITY. This model allows implementors to trade
performance for size.

o TERMINAL SUPPORT. The model will support all specific and
generic terminal types defined by the Digital Terminal
Software Architecture.

"Goals" are those attributes that are desirable in the model described
herein. The goals of the remote command terminal architecture, listed
in descending order of preference, are:

o HUMAN ENGINEERING. The model should be compatible with
established concepts of ease of use at the terminal/user
interface.

o EXCELLENT PERFORMANCE. Terminal response time consistent
with the service provided by the lower layer communication
service used by the implementation.

o EXTERNAL STANDARDS COMPATIBILITY. The model should not
preclude host compatibility with existing external standards;
for example, ANSI escape sequences.

o TERMINAL CHARACTERISTICS. The model should support all
terminal characteristics of all host systems as seen by both
terminal users and programs (implying that all existing
programs will communicate with terminals accessed via
implementations of this model).

o NEW STANDARDS. Where possible, similar functions seen by a
terminal user (e.g., the echoing of "delete previous line")
should be standardized across hosts and servers.

The non-goals of the remote command terminal architecture are:

o INVENTION. The model should not include new terminal
services, with specific reference to the following:

- forms applications
- graphics applications
- editor applications

The model may provide a set of terminal handler "primitives",
which are essentially atomic functions, which may be used by
the applications listed above, but it will not provide any
explicit, sophisticated support for these applications.

o ROGUE DEVICES. The model should not provide support for
"strange devices" (cassette drives, etc.) simply because such
devices may be connected to a terminal interface. The model
does not need to support any device that does not behave like
a "normal" interactive terminal. In particular, support is
not guaranteed for devices that do not support local flow
control conventions (XON/XOFF for Digital terminals).

2.0 NETWORK COMMAND TERMINAL OVERVIEW

This section describes a model for distributed terminal handling. In
this model, the terminal-handling functions historically provided by
system terminal drivers are provided by a collection of
terminal-handling modules distributed among the systems of a network.

There are two types of terminal handling modules: those residing in
host systems and those residing in server systems. A host system runs
an operating system that has resources such as application programs,
compilers, and command language interpreters available to human
terminal users. A server system is an intelligent system (in that it
is capable of communicating with a host system via a protocol, and
capable of communicating with a human terminal user via a command
language) to which one or more terminal devices (keyboards, printers,
screens, etc.) are attached. Examples of a server system are: a
PDP-11/23 operating as a dedicated terminal concentrator; a personal
computer attached to a network, and a VMS system that allows a user to
issue the SET HOST command to connect to a remote host. Figure 2-1
illustrates these concepts.

1 HOST SYSTEM 1
I I

1 1 OPERATING SYSTEM 1 1
I +------------------+ I
I I I
I I (1) I
I v I
I +----------------------+_

1 1 DISTRIBUTED COMMON

I I
1 SERVER SYSTEM 1
I I

TERMINAL HANDLER 1 1
- - - - -+ + I

I I I
I I (2) I
I v I

Figure 2-1 Distributed Common Terminal Services Model

In Figure 2-1, the module labeled Foundation Services is included for
compatibility with the Foundation Services of the Digital Terminal
Software Architecture. Briefly, this module is introduced to
establish a clean position for future incorporation of
terminal-model-independent control functions (for example, cursor
movement) and for logical to physical terminal mapping functions
(these functions would allow a CRT user, for example, to create two
logical terminals, log each one on to a separate host, and see the
output from each host appear in a separate window on the screen). The
complete functions of this module are described in the Network Virtual
Terminal Foundation Services. For the present, the Foundation
Services module provides a one-to-one correspondence between a logical
terminal and a physical terminal.

Figure 2-1 also presents a logical view of distributed terminal
handling. The emphasis here is in viewing the host-resident and
server-resident terminal-handling functions as creating a single,
distributed terminal handler. This view of terminal handling is
described in more detail below.

Figure 2-1 shows how each terminal attached to a given server may
communicate with a given host. In a network, each such terminal may
communicate with a different host, and a given host communicate
simultaneously with terminals attached to multiple servers. Figure
2-1 and the model presented below concentrate on the communication of
a single terminal with a single host. Multiple communications may
occur simultaneously in a network.

In Figure 2-1, two interfaces, labeled (1) and (2) , are identified.
These are key interfaces in that their definition captures the essence
of the functions of the proposed distributed terminal handler. This
specification does not require that these interfaces be implemented as
described in any host or server system. However, their precise
definition is viewed as the best way to develop the protocol
description that is presented herein.

2.1 Host Terminal Interface

The host terminal interface, labeled (1) in Figure 2-1, is the
interface that an operating system uses to communicate with a
terminal. This interface is defined to allow the operating system to
provide application programs with the same terminal access functions
they have had historically via system-resident terminal handlers.

Examples of functions available at the host terminal interface follow.

2.1.1 Writing Characters - The operating system can send characters
from an output buffer to the terminal.

2.1.2 Reading Characters - The operating system can provide a read
buffer for receiving characters from the terminal. The handler will
terminate the read on a "termination" condition. A termination
condition can occur in a number of ways: the read buffer is filled; a
termination character is entered (the operating system defines the
active set of termination characters when it issues the read request);
the interarrival time of characters from the terminal exceeds a
threshold; or by request of the operating system (via an "unread"
function). The handler provides input buffer editing, echoing, and
other input-related functions. Synchronization of input character
echoing with output characters is also done within the handler.

2.1.3 Out-of-band Input - The operating system can read out-of-band
characters (e.9. control-C) that have been entered at the terminal.
These characters are delivered to the operating system independently
from the normal stream of input characters. The host specifies which
characters are out-of-band characters and enables this function by
writing characteristics.

2.1.4 Writing Characteristics - The operating system can set various
terminal characteristics. Some of these characteristics have been
mentioned above. Additional examples of characteristics are:

o the "normal echo" flag - a Boolean variable that defines
whether or not characters other than control characters are
echoed

o the "raise input" flag - a Boolean variable that defines
whether or not an entered lower case character is raised to
an upper case character before being processed in any other
wa Y

Further characteristics are described in detail later.

2.1.5 Reading Characteristics - The operating system can read any
characteristic.

2.2 Server Terminal Interface

The functions of the server terminal interface, labeled (2) in Figure
2-1, can be described at two levels. At the lowest level, it is the
interface over which characters to and from a human terminal user
pass. This interface level is described in detail in the Foundation
Services specification. At a higher level are the functions perceived
by the human using the terminal. Examples of the higher level
functions that are available at the server terminal interface follow.

2.2.1 Echoing - Echoing is the function of printing back out on the
terminal any character that is input. A character is echoed when it
satisfies the current Read pending from the operating system. For
purposes of echoing, input characters are either control characters
a n d DELI or non-control characters. Non-control characters either
echo as themselves or do not echo as specified by the NORMAL-ECHO
characteristic. Control characters (and DEL) either do not echo, echo
as themselves, or echo in a "standard way" as specified by the
CHARACTER-ATTRIBUTES characteristic. Echoing in a "standard way"
allows the operating system, for example, to have a <carriage return,
line feed> echoed when a carriage return is entered.

2.2.2 Type-ahead - Type-ahead is the function of internally queuing
entered input characters for which there is no current pending Read
request from the operating system.

2.2.3 Input Editing - Input editing includes the functions associated
with the DELETE, control-U, and control-R input characters (viz.,
delete previous character, delete current input, and display current
input). It also includes the functions associated with the VMS
control-X character (delete type-ahead as well as current input) and
the TOPS-20 control-W character (delete previous word).

2.2.4 Output Control - Output control is the function associated with
the control-0 input character (alternate keystrokes discard some
amount of queued output and reenable output). This function also sets
a characteristic that can be read by the operating system indicating
if output discard operation is in effect.

2.2.5 Out-of-band Input - Out-of-band is the function generally
associated with the control-C, control-Y, or control-T input character
(depending on the operating system). This function has two forms. In
either form, an entered out-of-band character is placed in a separate
out-of-band buffer that can be read by the operating system
independently from normal input. In one form (normally used for
control-C and control-Y), the entry of this character also clears any
type-ahead and terminates the current Read, if any; however, in the
other form it doesn't.

2.2.6 Quoting - Quoting is a function that allows a terminal user to
pass through, as data, a character that is otherwise defined as a
control character (e.g., an input editing character, an output control
character, or an out-of-band character). This function is associated
with the control-V character. Its effect is to shield the following
character in the input stream from recognition as a control character.

2.2.7 Output/Echo Synchronization - Output/Echo synchronization is
the function of synchronizing output from the operating system with
echoed output resulting from operating system Read requests. The form
that this synchronization takes is controlled by the host. In
general, if an operating system requests a Read, the characters from
any previous output function will appear on the terminal before the
first character echoed as a result of the Read. However, Write output
can "break through" a Read in progress under certain conditions. The
resolution of the "collision" of input echoing and these types of
output can be controlled by the operating system through the use of a
LOCKING flag on WRITES from the operating system.

2.3 ~ulti-character Input Tokens

Certain sequences of input characters, called "tokens", are considered
as groups. These are: (1) a quote character followed by any
character and (2) an escape sequence. The characters which constitute
a token will not be divided across two or more Reads unless the first
character of the token is the first character placed in an empty Read
buffer. This can not happen for quoted characters except for the
incongruous case of one-character Reads. The details of escape
sequence handling are discussed in the next section and in Sections
4.10 through 4.12.

2.4 Escape Sequences

Escape sequence recognition may be enabled or disabled. When enabled,
escape sequences are recognized as a syntactic unit (token) and
treated, wherever possible, as a unit. When enabled, on input they
terminate Reads, do not echo, and have precedence greater than that of
enabled editing characters. On output, they are written to the
Foundation Services transparently and cause the horizontal and
vertical position modeling to be set back to the origin. The network
command terminal module performs only escape sequence recognition; it
does not parse escape sequences. For the convenience of implementors,
Appendix A provides an algorithm for escape sequence recognition.

2.5 A Data Flow Model

Figure 2-2 depicts the distributed common terminal handler of Figure
2-1 as if it were a single module in a single system, internally
composed of three processes, a procedure, and four buffers. This
version of the model emphasizes the flow of data between the operating
system and the terminal.

Figure 2-2 Refined Common Terminal Services Model

The model depicted in Figure 2-2 and discussed below describes data
movement between the operating system and the terminal. In this
model, distributed operation is shown as the cooperation of multiple
processes. Each process is assumed to run at its own speed,
independently from every other process.

2 .5 .1 Pre-input Process - The pre-input process reads characters from
the server terminal interface. Each character is examined to
determine how it should be processed. The examination proceeds as
follows.

First, if the input character is defined as an out-of-band character
(the operating system may define multiple such characters), the
character is placed in the out-of-band buffer. The out-of-band
buffer, as well as the remaining buffers, is really a queue in which
the characters placed in it retain their order. There are three types
of out-of-band characters:

1. Hello -- a "hello" out-of-band character normally has no
effect on the normal input data stream (as an option,
however, a copy of a "hello" out-of-band character can be
included in the type-ahead buffer as well as in the
out-of-band buffer).

2. Immediate clear -- an "immediate clear" out-of-band character
clears the type-ahead buffer and terminates any pending Read.
Only control characters can be "clear" out-of-band
characters.

3. Deferred clear -- a "deferred clear" out-of-band character,
unlike the other out-of-band characters, consists of two
consecutive, identical control characters treated as a unit.
It clears the type-ahead buffer and terminates any pending
Read. Only one character is put into the out-of-band buffer.

Out-of-band characters are read one at a time at the host-terminal
interface.

Normally, non-control out-of-band characters are not echoed -- if the
option to include a copy of a "hello" out-of-band character as normal
input is exercised, the copy (treated as a normal input character) may
be echoed depending on whether that character would normally be
echoed. Control out-of-band characters are echoed according to the
CHARACTER-ATTRIBUTES characteristic. They are echoed immediately
without regard to whether the server is locked.

Second, if control-X is enabled (control characters are enabled by the
operating system via writing characteristics), and a control-X
character is read, the type-ahead buffer is cleared, and, if a read is
pending, the control-X is changed to a control-U and placed in the
type-ahead buffer.

Third, if the control-0 function is enabled, and a control-0 character
is read, an "output-discard" state variable used by the output process
is toggled. This state variable takes on "discard output" and "don't
discard output" values. The value of this state variable affects the
operation of the output process, as described below. The operating
system can read the value of the state variable by reading its state.
It may set the value to "don't discard output" whenever it issues a
Write request.

Finally, if the input character is not one of the above, it is placed
in the type-ahead buffer. Characters flagged with an error (i.e.,
line break, framing error, parity error, and receiver overrun) are
either discarded or placed in the type-ahead buffer (together with the
error) according to the value of the ERROR-PROCESSING characteristic.

If the pre-input process cannot completely process a character because
the out-of-band buffer or the type-ahead buffer is full or because the
output procedure rejects the call to output (because it was rejected
by the Foundation Services), the pre-input process is modeled as
looping until the character can be completely processed. During this
time, the pre-input process is not reading characters from the server
terminal interface. This causes data entered by the terminal user to
be queued within the Foundation Services module and, possibly, within
hardware. Eventually, input data is lost if the pre-input process
cannot make progress. (Notification of data loss to the terminal user
is a function performed by the Foundation Services module and/or
terminal hardware.)

2.5.2 Input Process - Where an input buffer is present (i.e., the
host has a Read request outstanding), the Input Process reads
characters from the type-ahead buffer and writes them to the input
buffer. Each character is examined to determine how it should be
processed. The examination proceeds as follows.

First, if escape sequence recognition is enabled and the character is
part of an escape sequence, it is processed by the escape sequence
state machine. If the character is the last character of an escape
sequence, the Read is terminated. The details of escape sequence
processing are in Section 4, OPERATION.

Second, if the character is an enabled input editing character, the
input editing function is performed. The defined input editing
functions are:

o Delete character (DEL) - this function causes the character
at the end of the input buffer to be removed and "unechoed".

o Delete word (control-W) - this function causes the word at
the end of the input buffer to be removed and "unechoed".

o Delete input (control-U) - this function causes the input
buffer to be emptied and the prompt redisplayed on the next
line.

o Redisplay input (control-R) - this function causes the entire
input buffer plus the prompt (if any) to be re-echoed
starting on the next line of the presentation device.

Third, if the character is a termination character, the input process
terminates the current Read and returns the input buffer to the
operating system (see below). The termination character is echoed if
the operating system has enabled echoing for this termination
character.

Finally, if the character is a normal data character, it is placed in
the input buffer and echoed. If the character fills the buffer, the
current Read request is terminated.

In addition to the processing described above, the input process
treats the following as termination conditions:

1. no character appears in the type-ahead buffer for a
continuous period of time (defined by the operating system)

2. the input process receives an "Unread" request from the
operating system

3. the user enters an enabled DELI control-W, control-U, or
control-X character while the input buffer is empty (this
termination condition is selected by the operating system
independently for each Read request)

4. an enabled vertical change on the presentation device occurs
as the result of echoing a user entered character (this
termination condition is selected by the operating system
independently for each Read request)

5. an error (i.e., line break, framing error, parity error, or
receiver overrun) is flagged on an input character from the
user

See Section 4, OPERATIONS, for details of the handling implied by
these conditions.

As in the case of the pre-input process, if the input process cannot
completely process a character because the operating system has no
active Read request or because the output procedure rejects the call
to output the echo, the input process is modeled as looping until the
character can be completely processed. During this time, the input
process is not reading characters from the type-ahead buffer. This
eventually causes the pre-input process to stop processing data as
described above.

2.5.3 Input Process/Host Terminal Interface Interaction - The
preceding description of the input process refers to "returning the
input buffer to the operating system". This can be visualized as
follows.

When the terminal is first connected to the operating system, the
input buffer shown in Figure 2-2 is not really present. The operating
system makes the input buffer "present" by issuing a Read request at
the host terminal interface, specifying the address of an input
buffer. "Returning the input buffer to the operating system" is
equivalent to marking the input buffer as "Read complete." Such an
input buffer is not really "present" in the handler thereafter.

The Read function invoked by the operating system is powerful. It
allows the operating system to preload the input buffer (for prompts),
to define a portion of the input buffer at the beginning to be not
deletable by input editing functions (also for prompts), and to cause
the buffer to be "echoed" from any position to the end (for TOPS-20
input recognition operation). The Read function is defined in more
detail below.

2.5.4 Output Procedure - The output procedure coordinates the output
of characters to the Foundation Service from both the output process
and the input process (for echoing).

The output procedure is called by the output process to write output
characters and by the input process to write echoed characters. The
output process defines the points in its stream of output characters
at which it is willing to let echo characters be output. This is done
via "lock" and "unlock" functions. "Lock" is a request to block the
input process. "Unlock" is a request to unblock the input process.
When output isn't locked, echo takes precedence.

2 . 5 . 5 Output Process - The output process handles the output-discard
state and sends characters from the output buffer to the output
procedure. The operation of this process proceeds as follows.

A state variable controls output data discarding. If the value of the
state variable is "discard output", the output process discards data
in the output buffer; otherwise, it calls the output procedure to
write the data to the terminal.

Data in the output buffer consist logically of characters and flags.
There are "start-of-message" and "end-of-message" flags. These flags
are set as a result of the host terminal interface Write function,
described in more detail below.

A "start-of-message" flag may "lock" the output procedure so it
accepts no characters for echoing from the input process. There are
two "end-of-message" flags. One "unlocks" the output procedure after
the last character from the Write has been processed. The other
optionally causes a "redisplay" of the input buffer if the output
procedure was just "unlocked".

If the output process cannot completely process a character because
the server terminal interface is not accepting characters (this could
happen if the terminal user enters an XOFF character), the output
process is modeled as looping until the character can be completely
processed. During this time, the output buffer is not being emptied.
This will eventually be observed at the host terminal interface as an
inability to successfully issue the Write function.

2 . 5 . 6 Synchronization - The description of two points of
synchronization concludes this section.

When the operating system has no outstanding Read request, it can
redefine the echo characteristics without a race condition for normal
input characters. That is, this operation ensures that there is no
ambiguity about how a given normal input character will be echoed. If
the operating system has a Read request outstanding while it changes
the echo characteristics, the echo translation for an input character
is indeterminate.

This description of conflict resolution by the output procedure
pertains to a conflict of echo data with output data. In that case,
the echoing is a result of a Read request given by the operating
system BEFORE the Write request that produced the output. In the case
of the conflict of echo data with output data when the corresponding
Read request was made AFTER the Write request, the distributed
terminal handler always completes the output before echoing the input.
This means that if an operating system issues a Write, then a Read,
then a Write, the output data from the first Write request is
guaranteed to be given to the terminal before the first echoed
character from the Read request. The output from the second Write
request "breaks through" the Read request if the Read is still active
when the Write arrives. If this happens, the optional locking of the
output procedure determines whether or not echoes from the Read can be
intermingled with output from the Write.

The definition of output/echo synchronization given above means that a
Read request may be delayed arbitrarily long behind an output request
i f , for example, the terminal user enters a XOFF with no succeeding
XON for a long period of time) even in the case where the operating
system has set the echo characteristics to "don't echo" for the Read.
This means that input from and output to "full duplex" terminals does
not occur simultaneously with complete independence.

3.0 INTERFACES

As stated previously, the two major interfaces to the handler are the
host terminal interface, which exists in a host, and the server
terminal interface, which exists in a server. Both are described
below.

3.1 Host Terminal Interface

The host terminal interface functions are modeled as being provided by
subroutines. Each subroutine description consists of a name followed
by (in parentheses) a list of arguments and return values. The
arguments appear first and are separated from the return values by a
semicolon. Optional arguments are enclosed in brackets ([...I).

The following conventions pertain to the interface description:

Each function in this interface includes a portal identifier
that specifies the associated logical terminal. A portal
identifier is defined in the Network Virtual Terminal
Foundation Services.

The term "buffer" refers to the combination of address and
length information that identifies data and its location.

There are two types of interface functions: those that
complete immediately ("atomic functions"), and those that
queue a request to perform a function at some point in the
future ("queued requests"). Queued requests require
resources to queue the request therefore, have "insufficient
resources" failure returns. If a queued request succeeds
t h e request is successfully queued), then the requested
function will be performed sequentially with respect to all
other queued requests. For example, if a queued request to
WRITE-CHARACTERISTICS is followed by a queued request to
READ-CHARACTERISTICS, the values returned from the Read
request will reflect the previous Write request.

The interface functions described below contain "polling" functions.
A polling function obtains status about a previously queued request.
An implementation would probably convey this kind of status through an
event-queuing mechanism rather than polling. The polling form was
chosen here so that all information flowing between the requester of a
function and the provider of the function would be modeled in a
single, consistent way.

3.1.1 Reading Normal Characters - Some of the arguments for the READ
function are index values into the input buffer. These indexes are
16-bit values. The maximum size of an input buffer is 2**16-1 bytes.

READ (PORTAL-ID, BUFFER, END-OF-DATA, UNDERFLOW-HANDLING, NO-ECHO,
NON-DEFAULT-TERMINATION-SET, CLEAR-TYPE-AHEAD-FLAG,
FORMATTING-FLAG, TERMINATOR-ECHO-FLAG, [RAISE-INPUT],
[RECOGNIZE-INPUT-ESCAPE-SEQUENCES] [DISABLE-CONTROL],
 TIME OUT,^ [END-OF-PROMPT,] [START-OF-DISPLAY,] [LOW-WATER,]
[TERMINATION-SET]; RETURN)

queues a read request.

where the parameters of the read function are:

- BUFFER is a buffer to receive input; the maximum size is
2**16-1 bytes.

- END-OF-DATA is the character position after the end of
existing data. The first character of new input data will go
into this position. This pointer also marks the end of the
display.

- UNDERFLOW-HANDLING defines the action when an enabled DEL,
control-W, or control-U character is entered for an empty
input buffer. It is one of the following:

IGNORE - iqnore such a character

NOTIFY - send a BEL character to the terminal

TERMINATE - treat it as a READ termination

- NO-ECHO is a Boolean flag. If TRUE, this overrides any
echoing specified by the characteristics.

- NON-DEFAULT-TERMINATION-SET is a Boolean flag. If FALSE, it
causes the server to use a universal default termination set
for this READ; the default is all control characters except
control-R, control-U, control-W, BS and HT. If TRUE, the
server uses either the termination set specified by this READ
or, if no termination set is specified with this READ, the
last termination set it received with a previous READ.

- CLEAR-TYPE-AHEAD-FLAG is a Boolean flag. When it is TRUE,
the type-ahead buffer is cleared before the READ is
processed.

- FORMATTING-FLAG is a Boolean flag. If TRUE and the last
character output was a CR, then output a LF (avoid
overprinting); in addition, if the first character of the
preloaded input would echo as a LF, ignore it (avoids
accidental double spacing). If FALSE, no special action.

- TERMINATOR-ECHO-FLAG is a Boolean flag. I f TRUE, termination
character echoed; if FALSE, it is not echoed.

- RAISE-INPUT is a Boolean flag. If TRUE, lowercase alphabetic
characters are converted to uppercase for this READ
(overriding the value of the corresponding characteristic).
If FALSE, no conversion is made (overriding the value of the
characteristic). If this optional parameter is not present,
the characteristic prevails.

- RECOGNIZE-INPUT-ESCAPE-SEQUENCES is a Boolean flag. When it
is TRUE, the distributed terminal handler recognizes input
escape sequences and processes them as described in the Input
Escape Sequence subsection of Section 4.10. When the flag is
FALSE, input escape sequences are not recognized and the
characters of the escape sequence are treated as individual
input characters. If this parameter is not present, input
escape sequence processing is handled according to the value
of the INPUT-ESCAPE-SEQUENCE-RECOGNITION characteristic.

- DISABLE-CONTROL defines which control characters are disabled
as control characters and processed as normal data. This
specification overrides the value of characteristics (e.g.,
control-U) for the duration of the read. It is one of the
following:

NONE

CLEAR and REDISPLAY

ALL

all control characters perform their
normal function (subject to the current
characteristics).

the input editing control characters
control-U and control-R are treatedas
normal data characters (i.e., they are
disabled as editing characters for the
duration of this read).

input editing control characters (DEL,
control-W, control-U, and control-R) are
treated as normal data characters.

all control characters are treated as
normal data characters except XON and
XOFF; this includes all input editing
characters, control-0, control-XI and
all out-of-band characters.

NOTE

As XON and XOFF recognition is in the
Foundation Layer, turning it on and off
must be done by setting the Foundation
INPUT-FLOW-CONTROL characteristic
appropriately. Thus, for Read-Pass-All,
the host must alter the Foundation
INPUT-FLOW-CONTROL characteristic as
well as the relevant CTERM
characteristics. It is also recommended
that Read-Pass-All be implemented by
altering the appropriate CTERM
characteristics (for the control
characters) rather than using the ALL
flag on the READ request. The reason
for this is that there are race
conditions between READS (control-X
isn't disabled between READS for
starters); use ALL with great care.

- TIMEOUT is the intercharacter arrival timeout value in
seconds. If a character does not arrive at the beginning of
the type-ahead buffer during this amount of time after the
previous character has been removed, the READ terminates. A
zero (0) value means to take the characters currently in the
type-ahead buffer and terminate the READ immediately without
waiting for further input.

- END-OF-PROMPT is the character position after a non-deletable
prompt. This prompt may be displayed along with the rest of
the input buffer, but it cannot be deleted by the terminal
user. If this argument is not present, the end of prompt
position is set to the beginning of the buffer.

- START-OF-DISPLAY is the first character position of data to be
displayed immediately. The data is displayed by "echoing" it.
That is, the characters to be displayed are translated into
their echo representation just as if they had been entered at
the terminal. If this argument is not present, the start of
display position is set to the end-of-data value.

- LOW-WATER is the last character position in the buffer that is
to be considered not to have been modified by input editing
since the READ was issued. This parameter may be decremented
during the READ, but is not incremented. The modified value
of this argument is returned with a read completion indication
via the READ-POLL function. If this argument is not present,
the low water position is set to the beginning of the buffer.

- TERMINATION-SET is the set of characters that can terminate
the READ. This set takes the form of a 256-bit mask. If this
argument is not present, the termination set most recently
specified by the READ function is used.

- RETURN is one of the following:

success - Read request queued

failure - Read request currently queued

failure - inconsistent arguments

Certain combinations of pointer values are considered as errors. An
example is when END-OF-DATA is less than END-OF-PROMPT.

UNREAD (PORTAL-ID, CONDITION; RETURN) -- queues a request to
(conditionally) terminate a previously queued Read request.

- CONDITION is one of the following:

ALWAYS -- terminate a Read unconditionally

EMPTY -- terminate a Read only if the type-ahead and input
buffers are empty (except for a prompt).

- RETURN is one of the following:

success

failure - Unread request currently queued

failure - no unterminated Read requests outstanding

If CONDITION has the value ALWAYS and input escape sequence
recognition is enabled, this resets the input escape sequence state
machine.

It is indeterminate if the current Read request will be terminated by
this request. This is due to the race condition that can occur within
the handler when a Read request is being terminated by internal
algorithmic activity (after a termination character is entered by the
terminal user) at approximately the same time that the operating
system issues the Unread request.

READ-POLL (PORTAL-ID; RETURN, BUFFER, LOW-WATER,
MORE-DATA-FLAG, VERTICAL-POSITION,
HORIZONTAL-POSITION TERMINATOR-POSITION)

checks if a previously queued READ request is complete.

- RETURN is one of the following:

success - Read terminated by a termination character
success - Read terminated by a valid escape sequence

success - Read terminated by an invalid escape sequence

success - Read terminated by an out-of-band character

success - Read terminated because the buffer filled

success - Read terminated by intercharacter arrival timeout

success - Read terminated by an Unread request

success - Read terminated by underflow (e.g., a DEL character
was entered when the input buffer was empty)

success - Read terminated by an absentee token (complete
token would not fit in current Read -- still in
server

success - Read terminated by line break (final character in
buffer is NUL received with break)

success - Read term
in buffer

success - Read term
buffer is

inated by framing error (final character
is character on which error occurred)

inated by parity error (final character in
character on which error occurred)

success - Read terminated by receiver overrun (final
character in buffer is character on which error
occurred)

failure - no Read request outstanding

failure - Read not complete

BUFFER is a returned buffer (returned only on success)

LOW-WATER is the updated value of the corresponding parameter
from the READ function (returned only on success).

MORE-DATA-FLAG is a Boolean flag indicating if there was more
data in the type-ahead buffer when the Read terminated.

VERTICAL-POSITION is the relative vertical position change
(number of lines) on the presentation device since the
beginning of this Read.

HORIZONTAL-POSITION is the relative horizontal position
change on the presentation device since the beginning of this
Read.

TERMINATOR-POSITION is the number of data characters
excluding terminators, escape sequences, etc.) in the
buffer. Thus, if there is a terminator or escape sequence in
the buffer, it points to the terminator or the first
character of the escape sequence.

NOTE

The prompt from the READ function is not
returned by the READ-POLL function.

3.1.2 Reading Out-of-band Characters -

READ-OUT-OF-BAND (PORTAL-ID; RETURN, OUT-OF-BAND-CHARACTER)

requests the return of a pending out-of-band character.

- RETURN is one of the following:

success - out-of-band character returned

success - "line break" occurred; no out-of-band character
returned

failure - no out-of-band character pending

3.1.3 Writing Characters - The WRITE function is used to send
characters to the logical terminal. It may also be used to control
the terminal without sending characters to it. In particular, the
DON'T-DISCARD-FLAG has meaning in the WRITE function even if no data
is written.

WRITE (PORTAL-ID, DON'T-DISCARD-FLAG, NEWLINE-FLAG [,LOCKINGI
[, TRANSPARENT-FLAG] [, COMPLETION-STATUS-FLAG 1 [, BUFFER 1
[PREFIX-CODE, PREFIX-VALUE] [,POSTFIX-CODE, POSTFIX-VALUE];
RETURN [,REQUEST-ID])

requests several functions including writing data to the terminal.

- DON'T-DISCARD-FLAG is a Boolean value that, if true, sets the
output discard state of the handler to "not discarding"
before the output data is processed (see READ-DISCARD-STATE
function in Section 3.1.4).

- NEWLINE-FLAG is a Boolean value that, if true, directs the
logical terminal to output a linefeed at the end of a Write
and set an internal "skip linefeed" flag so that if the first
character in the next Write is a linefeed, double spacing is
avo ided .

- LOCKING is a value that defines how locking is to be handled
for the duration of this Write. The values are as follows:

0 - unlock

1 - lock before writing data; do not unlock after writing
data

2 - lock before writing data and unlock at end of data; do
not redisplay

3 - lock before writing data and unlock at end of data;
redisplay input buffer after unlocking.

- TRANSPARENT-FLAG is a Boolean value that, if true, causes the
data in this Write request to be written to the Foundation
Services using the "transparent" Write-character function.
"Transparent" Write does not expand tabs or wrap, and resets
HPOS and VPOS (position modeling) to zero.

- COMPLETION-STATUS-FLAG is a Boolean value that, if true,
causes the handler to return a Write completion status via
the WRITE-POLL function.

- BUFFER is a buffer containing the data to be sent to the
terminal. This argument is optional because the functions
requested by setting the other arguments true may be
requested without requesting data output. The WRITE function
is modeled as copying the data from this buffer immediately
to a buffer internal to the handler (an implementation may,
of course, not operate this way).

- PREFIX-CODE defines whether or not data should be prefixed to
the output and, if so, how PREFIX-VALUE should be
interpreted. It is one of the following:

NONE - don't prefix the output data
NEW-LINES - prefix the output data with <carriage return>

followed by the number of <line feed>'s
specified in PREFIX-VALUE

CHARACTER - prefix the output data with the character
specified in PREFIX-VALUE

- PREFIX-VALUE is either a number or a character, as defined by
PREFIX-CODE.

- POSTFIX-CODE is interpreted exactly as PREFIX-CODE, except
that it applies to postfixed data.

- POSTFIX-VALUE is interpreted exactly as PREFIX-VALUE.

- RETURN is one of the following:

success - request queued
failure - insufficient resources

- REQUEST-ID is a value returned only if COMPLETION-STATUS-FLAG
is true. It is a handle for executing the WRITE-POLL
function.

The following function is required only if the WRITE function requests
completion status.

WRITE-POLL (PORTAL-ID, REQUEST-ID; RETURN, HORIZONTAL-POSITION,
VERTICAL-POSITION)

polls to get back status of a previously queued Write request that
requested completion status.

- REQUEST-ID is a value returned from a previous Write request

- RETURN is one of the following:

success - Write complete, no data discarded

success - Write complete, data discarded due to control-0
action by user

failure - no outstanding Write request for REQUEST-ID

failure - Write request still queued

- HORIZONTAL-POSITION is the relative horizontal position change
of the cursor on the presentation device at the completion of
the Write.

- VERTICAL-POSITION is the relative vertical position change of
the cursor on the presentation device at the completion of the
Write.

3.1.4 Control and Status Functions -

CLEAR-INPUT (PORTAL-ID; RETURN)

queues a request to clear the type-ahead and input buffers.

- RETURN is one of the following:

success - request queued

failure - insufficient resources

If input escape sequence recognition is enabled, this resets the input
escape sequence state machine.

CHECK-INPUT (PORTAL-ID; RETURN)

queues a request to return the number of characters in the type-ahead
and input buffers (combined). The requested value is returned via the
CHECK-INPUT-POLL function. No more than one CHECK-INPUT request may
be queued at a time.

- RETURN is one of the following:

success - request queued

failure - CHECK-INPUT request currently queued

CHECK-INPUT-POLL (PORTAL-ID; RETURN, COUNT)

returns the character count requested via a previous CHECK-INPUT
function. The value returned is the value at some point in the past
between execution of the CHECK-INPUT request and the completion of
this function.

- RETURN is one of the following:

success - COUNT returned

failure - CHECK-INPUT request queued but not complete

failure - CHECK-INPUT request not queued

- COUNT -- the requested count (returned only on success)

READ-INPUT-STATE (PORTAL-ID; INPUT-STATE)

returns the input state of the terminal at some point in the past.

- INPUT-STATE indicates whether or not the number of characters
in the input and type-ahead buffers (combined) is zero. It
is one of the following:

ZERO

NON-ZERO

READ-DISCARD-STATE (PORTAL-ID; DISCARD-STATE)

reads the discard state of the terminal at some point in the past.

- DISCARD-STATE is a value indicating if output to the terminal
is being discarded by the handler (due to the entry of a
control-0). It is one of the following:

DISCARDING - output is being discarded

NOT-DISCARDING - output is not being discarded

The state may be set to NOT-DISCARDING via the WRITE function.

3.1.5 Reading and Writing Characteristics -

WRITE-CHARACTERISTIC (PORTAL-ID, (SELECTOR,VALUE) [,...I; RETURN)

queues a request to write a collection of selected characteristics.

- SELECTOR is a characteristic selector (e.g. "RAISE-INPUT").

- VALUE is the new value for the specified characteristic.

- RETURN is one of the following:

success

failure - insufficient resources

The WRITE-CHARACTERISTIC function allows the operating system to write
both Foundation-maintained characteristics and handler-maintained
characteristics. While the latter can always be written by the
operating system, the former can not always be. I f the operating
system attempts to write a Foundation-maintained characteristic while
such writing is disabled (see the Network Virtual Foundation Services
specification), the Write will fail, but the operating system will be
given no explicit indication that the Write failed. The operating
system may ascertain that the Write failed by reading the
characteristic(s) back via the READ-CHARACTERISTIC function to see if
they changed.

READ-CHARACTERISTIC (PORTAL-ID, (SELECTOR,VALUE) [,...I; RETURN)

requests the return of the values of the selected characteristics.
The VALUE (the information being requested) parameter will in general
be "null" except in the case of characteristics with compound values
where part of the value may be used to further define (i.e. help
select) the characteristic whose value is being requested. See
section "Selector Values for Characteristics" in the OPERATION section
for further details of compound characteristic values. The values are
returned by the READ-CHARACTERISTIC-POLL function.

- SELECTOR is a characteristic selector.

- RETURN is one of the following:

success - request queued

failure - previous request outstanding

failure - insufficient resources

READ-CHARACTERISTIC-POLL (PORTAL-ID; RETURN, (SELECTOR, VALUE) [, ... 1
returns the values of characteristics previously requested by the
READ-CHARACTERISTIC function.

- RETURN is one of the following:

success - VALUES returned

failure - no request queued

failure - READ-CHARACTERISTIC request still queued

- SELECTOR is a characteristic selector.

- VALUE is the value of the corresponding characteristic
(returned on success).

3.2 Server Terminal Interface

The server terminal interface contains functions at two levels. At
one level, this interface allows the network command terminal module
in the server system to Read and Write characters, to detect mode
changes, and to Read and Write characteristics. These interface
functions are described in the Foundation Services specification.

At the second level, this interface contains functions perceived by
the human terminal user, as described generally in Section 2, Network
Command Terminal Overview. The quoting, output control, and input
editing control functions are described more fully below.

3.2.1 Quoting - If quoting is enabled (via a characteristic) and a
control-V character is entered at the terminal, the character
following the control-V is not recognized as a control character. It
is not acted upon as an output control character, an input editing
character, an out-of-band character, or a termination character.

The control-V and following character are treated as a single
character (a token). Therefore, entering a DEL character after such a
pair causes the pair to be deleted.

The control-V is passed to the operating system on read completion.
If the complete token will not fit in the current input buffer, the
READ is terminated (status -- success, terminated by absentee token)
and the host will have to post another READ to get the token plus any
subsequent input (a quoted character token does not terminate a READ).

3.2.2 Output Control - If output discarding is enabled (via a
characteristic) and a control-0 character is entered at the terminal,
the discard state of the terminal (read by the operating system via a
READ-DISCARD-STATE function) is toggled. That is, if its current
value is "discarding", it is set to "not discarding" and vice versa.

3.2.3 Input Editing - There are five input editing functions:

o redisplay input
o delete character
o delete word
o clear input
o clear type-ahead

The invoking of input editing and the effect of the server's input
editing algorithms on the presentation device are summarized below.
The details of input editing are described later in Section 4,
OPERATION.

3.2.3.1 Redisplay Input - The redisplay input function is invoked by
the entry of a control-R character. It redisplays the prompt from the
READ function (if any) concatenated with the contents of the input
buffer on the line after the current one.

3.2.3.2 Delete Character - The delete character function is invoked
by the entry of a DEL character. If underflow occurs and is a
termination condition, the editing is handled by the host. Otherwise,
the last character of the input buffer is deleted. If the character
has been echoed, its echo representation is deleted from the
presentation device as follows:

o Hard-copy terminals -- if the character is the first
character in a row to be deleted, a backslash (\) is output.
The character is then echoed as it originally was. When the
first non-delete character is entered after multiple DEL
characters, an ending backslash is output.

o Softcopy terminals -- each character in the echo
representation is deleted separately, from the last to the
first. In general, these echoed characters are removed
directly from the screen.

3.2.3.3 Delete Word - The delete word function is invoked by the
entry of a control-W character. It deletes the "word" at the end of
theinputbuffer. Awordisdefinedas consisting of a string of
consecutive alphanumeric characters followed by a string of
non-alphanumeric characters or the end of the input buffer. A word is
preceded by either a non-alphanumeric character or the beginning of
the input buffer. The effect of the delete word function when applied
to other than a word, as defined above, is to delete all characters
from the input buffer.

"Unechoing" for delete word is handled as though a DEL had been issued
for each character being deleted, i.e. for soft-copy terminals, each
character is blanked out -- for hard-copy terminals, each character
deleted is re-echoed using the \xxx\ figure.

3.2.3.4 Clear Input - The clear input function is invoked by the
entry of a control-U character. It clears the input buffer, the
control character is echoed and the prompt redisplayed on the next
line.

3.2.3.5 Clear Type-ahead - The clear type-ahead function is 'invoked
by the entry of a control-X character. It clears the type-ahead
buffer and then places a control-U in the type-ahead buffer if there
is an active READ.

3.3 Terminal Characteristics

An operating system has access to several characteristics via the
WRITE-CHARACTERISTICS and READ-CHARACTERISTICS functions. Some
characteristics that may be read and written via these functions are
maintained by the Foundation Services and are described in the
Foundation Services specification. Foundation-maintained
characteristics are maintained across bindings.

Other characteristics are maintained by the handler itself, and are
not maintained across bindings. They are summarized below.

Each description of the characteristics maintained by the handler
includes the initial value of the characteristic when a binding is
first formed. Each characteristic is one of the following types:

o Boolean -- takes TRUE and FALSE values.
o Integer -- signed integer; bit width is 16 bits unless

specified otherwise.
o Bit Map -- a string of bits, each having a separately defined

meaning.
o Compound -- a value which consists of more than one field.

The characteristics are defined below.

o IGNORE-INPUT -- causes all input from the server terminal
interface to be discarded without processing

- Boolean (initial value is FALSE)
- If TRUE, the handler discards all input.
- If FALSE, the handler processes all input.

o CHARACTER-ATTRIBUTES -- specifies, on a per character basis,
the attributes of the character. The format of this compound
characteristic is defined in subsection 4.17.2.1.

CHARACTER-ATTRIBUTES defines the following attributes for each
character:

- Out-of-band handling -- specifies whether a particular
character is an out-of-band character and the type of
out-of-band character it is. If a character is an
out-of-band character, it is passed to the operating system
independently from other input characters. The actions
specified for the out-of-band characters should be
performed in the order specified so the order of arrival of
out-of-band messages and Read messages at the host will be
predictable.

(a) Not out-of-band character

(b) Immediate-clear out-of-band character. The character
is placed in the out-of-band buffer. The type-ahead
buffer is then cleared (regardless of the enabled or
disabled state of control-X) and the current Read (if
one is outstanding) is terminated.

Deferred-clear out-of-band character. This is
actually a double control character (two consecutive,
identical, control characters). If only a single
control character of this type, it is treated as
though it were not an out-of-band character. A
deferred-clear out-of-band character produces the same
effect as an immediate-clear out-of-band character
except that only one of the two characters is placed
in the out-of-band buffer for transmission to the
operating system.

Immediate-hello out-of-band character. This character
is passed to the operating system independently of
other input characters, but it does not clear the
type-ahead buffer or terminate the current Read as
with the "clear" out-of-band characters.

- Include flag -- indicates whether a copy of a hello
out-of-band character should be included in the normal data
stream.

- Out-of-band discard flag -- indicates whether or not an
entered clear out-of-band character sets the output discard
state to "discard".

- Control character echoing -- specifies how a control
character or DEL should be echoed.

- Disable/enable special character function -- specifies
whether the special functions associated with certain well
known control characters are enabled or disabled.

o CONTROL-0-PASS-THROUGH -- specifies whether control-0
characters are passed through as input data characters when
enabled as a control character.

- Boolean (initial value is FALSE)

- if TRUE, the control-0 is passed through as input data in
addition to performing its control functions.

- if FALSE, the control-0 is not passed through as data.

o RAISE-INPUT -- specifies whether the lowercase alphabetic
characters are to be converted to uppercase on input.

- Boolean (initial value is FALSE).

- If TRUE, the characters whose decimal values are 97 -->
122, inclusive, have their values decremented by 32
(decimal). This is done by the input process as characters
are moved from the type-ahead buffer to the input buffer.

- If FALSE, no conversion is done.

o NORMAL-ECHO -- specifies how characters other than control
characters and DEL are echoed.

- Boolean (initial value is TRUE)

- If TRUE, echo the characters.

- If FALSE, don't echo the characters.

o INPUT-ESCAPE-SEQUENCE-RECOGNITION-ENABLE -- specifies whether
input escape sequences are recoqnized.

- Boolean (initial value TRUE).

- If TRUE, input escape sequences are recognized and
processed as described in Section 4.10.1, Input Escape
Sequences.

- If FALSE, input escape sequences are not recognized and the
characters in the escape sequence are treated as normal
data.

o OUTPUT-ESCAPE-SEQUENCE-RECOGNITION-ENABLE -- specifies whether
output escape sequences are recognized.

- Boolean (initial value TRUE).

- If TRUE, output escape sequences are recoqnized and
processed as described in Section 4.12.3, Output Escape
Sequences.

- If FALSE, output escape sequences are not recoqnized and
the characters in the escape sequence are treated as normal
data.

o INPUT-COUNT-STATE -- defines how the automatic transmission of
input state messages is to be handled.

- Integer (initial value DO-NOT-SEND)

- DO-NOT-SEND -- do not automatically send input state
messages when the number of input characters changes
between zero and non-zero.

- NO-READ-SEND -- the input state message is automatically
sent only when there is no outstanding READ.

- SEND -- the input state message is automatically sent when
the combined input buffer and type-ahead count changes
between zero and non-zero except when a Read terminates (in
which case, the same information is sent in the Read Data
message 1 .

o AUTO-PROMPT -- specifies whether a control-A is sent to the
terminal after the prompt, if any, before the Read.

- Boolean (initial value is FALSE).

- If TRUE, a control-A is sent.

- If FALSE, a control-A is not Sent.

o ERROR-PROCESSING -- specifies whether the following types of
error (received together with an input character from the
logical terminal service) are ignored by the pre-input process
i.e., the pre-input process discards the error and character
so the input process never sees either the error or the input
character) or are queued in the type-ahead buffer (together
with the character on which the error occurred). Characters
received with one of the following error indications are not
processed according to the normal precedence rules specified
for the pre-input process (see Section 2.5.1). Instead, they
are always processed with the lowest precedence (so an error
can't accidentally cause something dreadful to happen, e.g., a
parity error turn an ordinary X into a control-X):

- Bit map with one bit for each type of error. The values
for each bit are "ignore" (0) or "queue" (1) (initial value
for each error type is "ignore").

- Error types are:

1 ine break

framing error

parity error

receiver overrun

3.4 Termination Set

The termination set is a 256 bit map whose initial value is zero.
There is one bit for each of the characters whose value is in the
range 0-255. A character is a termination character if its
corresponding bit is set.

4.0 OPERATION

This chapter considers the handler as a distributed system. Figure
4-1 shows the handler's structure.

1 1 OPERATING 1
1 1 SYSTEM 1
I +- - - - - - - - - -____+

I I (1)
I v
I + - - - - - - - - - - - - - -+

1 HOST HANDLER I =
1 1 MODULE 1

= SERVER HANDLER 1 1
1 1 MODULE 1 1

1 1 COMM. I LOGICAL 1 1
I I I TERMINAL! I
I I I I
1 1 FOUNDATION 1 1
1 1 SERVICES 1 1

I
TERM1 NAL
DEVICE(S)

Figure 4-1 Structure of Distributed Terminal Handler

In Figure 4-1, interfaces (1) and (2) are equivalent to the interfaces
of the same number in Figure 2-1. Interfaces (3) and (4) allow the
two modules constituting the handler to make use of a binding between
them to transmit and receive command terminal protocol messages. The
functions of these interfaces (3 and 4) are described in the
Foundation Services specification.

In the following descriptions of interfaces (1) and (2) , the part of
the handler residing in the host system is referred to as the host
module, or more simply the host. Similarly, the part of the handler
residing in the server system is referred to as the server module or
the server.

4.1 Interfaces and Protocols

Examination of the interfaces (only interfaces (1) and
2) -- interfaces (3) and (4) are operating at a lower level and are
not relevant for purposes of this discussion) specified in Section 3
and the protocol specified in this section will show that the
functions offered are not identical. The protocol, for example,
supports terminating a R E A D on a vertical change in the echoed image
of input data, a function which is not available at interface (1).

This difference between the functions of the interfaces and the
protocol is a result of the relation between the two. It is the
interfaces that are of primary importance and the protocol is just a
means to support these interfaces in a distributed environment.
Standardized conceptual interfaces, such as (1) and (2), are one of
the key factors in distributed processing. While the protocols which
are used to support these interfaces are, in a certain sense, more
visible than the conceptual interfaces themselves, it is important not
to get their roles reversed. The idea of a layered architecture, used
in both DNA and TSA, is based on conceptual interfaces.

4.2 Host/Server Division of Labor

This specification defines most of the distributed terminal handler
functions to be performed by the server. The reason for this is that
the goal of reasonable performance implies the need to handle user
input editing requests close to the user. This, in turn, implies that
the input process (and, therefore, the pre-input process and output
procedure) of Figure 2-2 must reside in the server.

The host module primarily converts host terminal interface requests to
protocol messages and vice versa. The host module is, therefore, not
discussed in detail below.

Much of the algorithmic operation of the server is implied by the
descriptions in Section 2. The descriptions below do not restate the
operation implied by Section 2 but add information regarding protocol
operation; the relation to the Foundation Services interface and; in
some cases, details of algorithmic operation not found in Section 2.

4.3 Data Channels

The host and server modules communicate via a binding provided by the
Foundation Services.

4.4 Protocol Message Overview

The message types in the command
below.

Message
- - - - - - -

Initiate

Start Read

Read Data

Out-of-band

Unread

Clear Input

Write

Write Complete

Discard State

Read Characteristics

Characteristics

Check Input

Input Count

Input State

terminal protocol are summarized

Definition

carries initialization information

carries READ request

carries input data

carries out-of-band input data

carries UNREAD request

carries Clear Input request

carries WRITE request

carries write completion status

carries a change to the output
discard state due to a terminal
user request (via an entered
output-discard character)

requests characteristics

carries characteristics

requests input count

carries input count

indicates a change from zero to
non-zero or vice versa in the
number of characters in the input
and type-ahead buffers combined

4.5 General Message Processing

The network command terminal protocol is a request/response protocol.
That is, the host module sends one, or several related messages, to
the server module in response to a single queued request (as described
in the host terminal interface) from the operating system. The server
module, in turn, sends one, or several related messages, to the host
module in response. The response messages are not necessarily sent
immediately or in a predictable order, but they are eventually sent.
The server never sends data to the host except in response to a
previously received Read request (conveyed to the server via a Start
Read message).

The server receives all protocol messages on a single data channel of
the underlying binding. These messages are generally processed to
completion in the order they are received. This ensures that
functions that the operating system expects to have executed
sequentially are so handled.

4.6 Protocol Errors

A protocol error occurs when a received protocol message cannot be
interpreted in a way that will ensure secure and synchronized
operation. An example is when a server receives a second Start Read
message without having completed the previous Read request. Unless
otherwise specified, the occurrence of non-zero values in unused or
reserved fields and 1's in unused or reserved bits in bitmaps can be
ignored. All other errors in received messages constitute a protocol
error with the single exception of the Initiate messaqe -- see Section
4.15, Protocol Evolution, for a statement of protocol compatibility.

A module detecting a protocol error breaks the connection over which
the protocol was operating. This process, known as unbinding, is
defined in the Foundation Services specification.

4.7 Initialization

When a pair of host and server modules first communicate over a given
binding, each sends an Initiate message to the other. It is a
protocol error for a module to receive any other messaqe when the
binding is first used. Similarly, it is a protocol error to receive
the Initiate message at any other time.

The Initiate message contains a version identification. An
implementation of this version (1.0.0 in the protocol) assumes it is
compatible with any future (higher-numbered) version; it is not a
protocol error to receive a version number higher than 1.0.0.

The Initiate messaqe is designed for easy extension; any parameter
which either module receives which it does not understand is ignored.

4.8 Characteristics Management

The host sends a Read Characteristics message to elicit a
Characteristics message from the server. If the operating system
changes the characteristics when there is no Read request pending, the
terminal characteristics will be as specified for subsequently issued
Reads and Writes.

It is a protocol error if an invalid selector or value is specified in
a Read Characteristics or Characteristics message.

4.9 Read Request Processing

The sections that follow discuss:

o Issuing the Read

o Unreadinq

o Position modeling

o Read completion

o Input editing

4.9.1 Issuing the Read - When the host terminal interface Read
function is executed, the host sends a Start Read message. This
message contains the parameters from the Read function. The portion
of data in the host's buffer after START-OF-DISPLAY is sent in the
DATA field of the Start Read message. It is assumed that the Start
Read protocol message size will be large enough to contain all the
data to be sent to the server. If formatting has been selected (the
FORMATTING-FLAG on the Read) and the last character output was a CR,
then a LF is output (to avoid overprinting); in addition, if the first
character of the preloaded input would echo as a LF, it is ignored (to
avoid accidental double spacing).

If the Start Read contains a prompt, the input process writes out the
characters in the prompt without performing any echo translation on
these characters. Next, the input process invokes the foundation
services RESET PAGE-STOP-POSITION function. If the Output-page-stop
characteristic is true, this function causes the Foundation
page-stop-position variable to be set 0; invoking this function when a
Read is issued, allows the foundation "Output page stop" algorithm to
produce the correct visual effect. If the output-page-stop
characteristic is false, this function has no effect.

If the AUTO PROMPT characteristic is TRUE, before the data in the
Start ~ead's DATA field (the prompt) is echoed, a control-A is sent to
the terminal (this is usually used by automatic input devices to
determine when a Read is posted).

If a server receives a Start Read message while it has a Read pending,
it is a protocol error.

4.9.2 Unreading - If a host wants to terminate a Read request it
issued earlier, it may send an Unread message to the server. An
Unread message terminates the current Read request (if any) when the
Unread message is processed in the server. This is considered a
termination condition and the Read request is completed as described
be low.

A host may specify that only an outstanding Read for which the input
buffer is empty and the type-ahead buffer is also empty will be
terminated.

If an Unread terminates a pending Read with a non-empty input and/or
type-ahead buffer, the input escape sequence state machine is reset if
input escape sequence recognition is enabled.

Since a Read completion and an Unread message may cross between the
host and the server, an Unread received by the server when no Read is
outstanding, is not a protocol error, and is ignored.

4.9.3 Position Modeling - The input editing functions in the server
require knowledge of the active horizontal output position. The
active horizontal and vertical positions are maintained by the
Foundation Services and are available at the server terminal
interface.

4.9.4 Read Completion - When a termination condition occurs in the
server (including processing an Unread message), the current Read
request is completed. All input data is sent to the host via a Read
Data message. The maximum protocol message size must be selected to
be large enough to contain both the Read message protocol header and
the whole input buffer. If there was a prompt in the Start Read
message, this prompt is not returned to the host in the Read Data
message (the prompt is non-deletable and the host is assumed to know
what it was in the event it is required).

4.9.5 Input Editing - Input editing can be handled in either of the
following ways:

o entirely within the server system (local) provided sufficient
resources are available in the server to contain the entire
input buffer specified with the Read request at interface
(l), or

o distributed between the server and host systems (as described
below) when either

a. the server does not have sufficient resources to contain
the complete input buffer, or

b. the host wants to provide more elegant handling of the
presentation of the echoed image of the human user's
i nput .

The server system's input editing algorithms do not assume the
existence of "up-line" and "delete-line" functions on the presentation
device and therefore input editing functions such as redisplay and
clear input can not blank-out the image of the currently active input
line on the screen or redisplay the input buffer in place. Instead,
they will echo the input editing control characters, issue a CR, LF to
advance to the next line on the presentation device, and then
redisplay the edited input buffer. Hosts requiring a more elegant
treatment of the image on the presentation device should use
distributed input editing.

4.9.5.1 Distributed Input Editing - With distributed input editing,
some of the input editing functions are handled in the server and the
remainder in the host. Typically, the input editing operations that
involve only the current physical line on the presentation device are
handled in the server, e.q., delete character and delete word.
Operations that involve more than just one line on the presentation
device are handled in the host when distributed input editing is
selected; that is, a delete around a line wrap. Also, operations that
involve redisplaying in place or blanking-out one or more lines are
handled in the host.

The host chooses whether to use local or distributed input editing.
If a host chooses to implement and use distributed input editing, the
host module must provide procedures to handle input editing functions.

4.9.5.2 Selecting Distributed Input Editing - The host selects
distributed input editing by setting the following characteristics and
Start Read message flags:

setting control-R and control-U to be termination characters
rather than enabled input editing characters -- this causes
the handling of redisplay and clear input to be passed to the
host which can handle multiple line deletes and redisplay in
place.

setting the Start Read message continuation-read flag TRUE
when the host already has a portion of the input from the
Read function -- this causes delete character and delete word
to be passed to the host when the server can not handle the
operation because the word or character to be deleted has
already been sent to the host.

setting the Start Read message terminate-on-vertical-change
flag -- this avoids the wrap problem by ensuring the server
never has more data than can be contained on one line on the
presentation device.

The effect of these characteristic and flag settings is to limit the
server, for distributed input editing, to handling only character and
word deletions where the item to be deleted is entirely on one line on
the presentation device.

4.10 Other Input Processing

In addition to normal input processing, the server handles escape
sequence recognition, case raising for input characters, input
processing for out-of-band, control-V, control-X, control-0 characters
and errors on input.

4.10.1 Input Escape Sequences - Input Escape sequence recognition is
enabled or disabled through the
INPUT-ESCAPE-SEQUENCE-RECOGNITION-ENABLE characteristic and
RECOGNIZE-INPUT-ESCAPE-SEQUENCE flag on the Read function. When
enabled, input escape sequence handling is as follows:

1. Input escape sequences are parsed by a state machine in the
input process and terminate the current Read.

2. Handling of the escape sequence as a whole (token) takes
precedence over the processing of any individual character
within the escape sequence which may be defined as a
terminator.

3. Input escape sequences do not echo.

4. If an input clear type-ahead function (control-X) is invoked
simultaneously with the parsing of an escape sequence, this
will result in the Read being terminated with an "invalid
escape sequence" status (the control-X will clear the
type-ahead buffer) and the input escape sequence state
machine is reset (the control-U put into the type-ahead
buffer after clearing it will not be processed as part of an
escape sequence).

5. The input escape sequence state machine is reset as a result
of terminating a Read due to either a Clear-input or Unread
from the host.

6. An input escape sequence is a token and will not be split
across two or more Reads and remain valid. Buffering of the
escape sequence is handled as follows:

o If the escape sequence can be contained in the current
Read buffer, it is included with and terminates that Read.

o If the escape sequence won't fit in the current Read
buffer and the Read buffer was non-empty before the start
of the escape sequence, the current Read is terminated
with a status of "terminated by absentee token".
Normally, the host will post another Read to get the
escape sequence.

o If the escape sequence goes into an empty Read buffer and
is completely contained, the Read is terminated with a
"valid escape sequence" status.

4.10.7 Errors on Input - Input characters from the Foundation
Services can have four errors associated with them, i.e., line break,
framing error, parity error, and receiver overrun error. The
pre-input process, depending on the value of the characteristic
ERROR-PROCESSING, may either discard these error characters (in which
case the error is ignored as the input process never sees the error or
the character on which it occurred) or it queues the character and the
error along with normal input in the type-ahead buffer for the input
process.

When the input process gets one of these errors, it terminates the
current Read. If a Read is not active in the server, the error
condition terminates the next Read that would normally include this
character. Any characters preceding the error are returned as normal;
the character on which the error occurred is the last character in the
buffer returned when the Read is terminated. The character on which
the error occurred is always returned, even if it is the only
character returned with the terminated Read (and is probably garbage).
What happens to the characters in the type-ahead buffer after the
character on which the error occurred is implementation dependent.

4.11 Write Request Processing

A host sends output to the server via the Write message. The server
may queue the information from a Write message. If it does, it also
queues the FLAG field information. The Write messages are processed
to completion in the order received.

Due to restrictions in the maximum length of a protocol message that
the server can receive, the information from a single Write request by
the operating system may be carried in multiple Write messages. When
this occurs, the first such message contains all flags from the WRITE
request, and the "beginning of message" flag in the message is set.
Write messages containing intermediate data have the "beginning of
message" and "end of message" flags cleared. The Write message
containing the final data has the "end of message" set. (A single
Write message containing all data from a single Write request has both
the "beginning of message" and "end of message" flags set.) All Write
message flags are ignored except when "beginning of message" is set.

It is a protocol error for a server to receive Write messages with the
"beginning of message" and "end of message" flags set incorrectly.
The following are protocol errors:

o receiving the first Write message on the binding with
"beginning of message" clear

o receiving a Write message with "end of message" set followed
by a message with "beginning of message" clear

o receiving a message with "end of message" clear followed by a
message with "beginning of message" set (there is an
exception to this when the output discard state is toggled,
as described in Section 4.12.1)

In the descriptions below, a "message" means the flags and data from a
single Write request, regardless of the number of Write messages used
to convey the request.

If a message has "don't discard" flagged, the output discard state is
set to "don't discard" before the message data are written. If a
message has "completion status requested" flagged, then the server
sends a Write Completion message after writing the message data.

The Write message contains information regarding prefixing and
postfixing data to the message data. The "prefix code" and "postfix
code" flags values and the PREFIX-VALUE and POSTFIX-VALUE fields
contain the information required to prefix and postfix the message
data.

A host may send a Write message without data to effect control. In
this case, the "beginning of message" and "end of message" flags are
both set, and the Write message does not contain the DATA field. The
rules stated above for "beginning of message" and "end of message''
flags also apply. This means that the host cannot interrupt the
sending of a sequence of Write messages containing output data to send
control data.

4.12 Other Output Processing

In addition to writing data, the server handles the output discard
state, locking, and output escape sequences. These are described
be low.

4.12.1 Output isc card State Handling - The server maintains two state
variables used for output discard processing: one (the "requested
state") that reflects what the user or operating system most recently
requested, and one (the "real state") that represents how the server
is currently processing output. Each state variable may take on the
"discard" or "don't discard" value. The initial state of each is
"don't discard" when a binding is first used.

When the user enters a control-0 character, the requested state is
toggled, and a Discard State message is sent to the host containing
the new requested state. When the Server receives a Write message
with the "set output discard state" flag set, it sets the requested
state to "don't discard".

When the requested state makes a change to "discard", the server sets
the real state to "discard" also. In this state, the server discards
the data from all received Write messages. When the server sets the
real state to "discard", it also clears the output "lock" if one is in
effect. However, the server continues to process the flags from Write
messages with the exception of "unlock" and "redisplay" flags.

When the server sets the requested state to "don't discard" because of
Write message flag processing, it also sets the real state to "don't
discard"; it does not change the real state to "don't discard" as a
result of a control-0 from the terminal user.

The host maintains a single version of the output discard state. It
sets this version to (1) the most recent value from a received Discard
State message, (2) "don't discard" as the result of a WRITE request
from the operating system specifying DON'T-DISCARD, or (3) "don't
discard" as the result of a Read request from the operating system.
 he host returns this version of the state on a READ-DISCARD-STATE
function.) When the host sets the state to "don't discard" as the
result of receiving a Discard State message containing the "don't
discard" state or as the result of the operating system executing a
WRITE with the DON'T-DISCARD-FLAG true, it sends a Write messaqe to
the server with the "set output discard state" flag set. When the
discard state is set to "don't discard" as the result of a Read
request from the operating system, the server sets the real discard
state to "don't discard" when it receives the Start Read message
generated as a result of the Read request.

While the host's state is "discard", it discards any data (but not
flags) from operating system Write requests.

The result of the operation described above is that a change to the
real "discard" state is always a result of the entry of a control-0 by
the user and is acted upon immediately by the server. A change to the
real "don't discard" state is always caused by host action. A
control-0 from the user to change the state back to "don't discard"
requires a round trip protocol exchange between the server and the
host.

It is possible for the server to have a resource failure in attempting
to send a Discard State message. If so, the server loops, trying to
send the message. (This looping is done by the pre-input process.)
Eventually, either the message is successfully sent, or data being
entered by the terminal user are lost.

Because a change to the real "discard" state may take place in the
middle of a multi-message write, a Write messaqe with the "set discard
output state" flag set is not considered a protocol error even if the
last Write messaqe received did not have the "end of message" flag
set.

4.12.2 Locking - Locking resolves the potential priority conflict
between output data from a WRITE request and output resultinq from
echoed input. When the server is not "locked", echo output has
priority on a character-by-character basis. When the server is
"locked", no echo output is accepted until the server is "unlocked".
The one exception to this is that out-of-band control characters are
echoed by the pre-input process without reqard to whether the server
is locked. Their echoing has priority over other output.

Locking and unlocking are controlled by parameters in the Write
message. If a Write message requests "locking", echoing is locked out
before the data are written. If a Write message requests "unlock" and
optionally "redisplay", echoing is unlocked after the data are written
and the input buffer is optionally redisplayed.

Once "locked", there are three ways in which the server can be
"unlocked":

1. All data are written and the Write message requested
"unlock".

2. A control-0 is entered which sets the read-discard-state to
discard".

3. A "clear" out-of-band character is entered.

4.12.3 Output Escape Sequences - I f output escape sequence
recognition is enabled (by characteristic only), output escape
sequences are written to the Foundation Services with the transparent
Write. After writing the escape sequence, the horizontal and vertical
position are both set zero.

If either OUTPUT-DISCARD or OUT-OF-BAND-DISCARD are enabled and a
discard character is entered while writing an escape sequence, a
"cancel" character must be written to the Foundation Services (to
return the terminal to a reasonable state!.

4.13 Additional Status and Control Operation

In addition to the operation described above, the server provides the
host with the ability to read and write characteristics, to clear
input, to request the number of characters in the combined input and
type-ahead buffers, and to be informed when this number changes from
zero to non-zero or vice-versa.

4.13.1 Reading and Writing Characteristics - The host writes one or
more characteristics by sending a Characteristics message to the
server. The length of this message is limited by the maximum length
of a protocol message that the server can receive. If the host wishes
to write more characteristics than will fit in a single
Characteristics message, it sends multiple messages.

If the host wishes to read one or more characteristics, it sends one
or more Read Characteristics messages to the server. The server
responds by sending one or more Characteristics messages containing
the requested information.

4.13.2 Clearing Input - The host sends a Clear Input message to the
server, requesting it to clear all input. Upon receipt of this
message, the server clears the type-ahead buffer and the input buffer
(if a Read is active).

4.13.3 Input Character Count Handling - The host requests the number
of characters in the type-ahead and input buffers combined by sending
a Check Input message to the server. Upon receipt of this message,
the server sends an Input Count message to the host.

In addition to this operation, under the control of the
INPUT-COUNT-STATE characteristic, the server sends an Input State
message to the host whenever the number of characters in the
type-ahead and input buffers combined goes from zero to non-zero or
non-zero to zero. This operation occurs without being specifically
requested by the host. The characteristic selects when an Input State
message is sent:

1. only when there is no outstanding READ, or

2. all the time except when a Read request completes and the
server sends a Read Data message with "finished" set and a
completion code, the "more type-ahead data" flag indicating
whether or not there is data in the type-ahead buffer.

4.14 Foundation Services Interface Events

Two significant events occur at the interface between the Foundation
Services and the handler module (either the host or the server
module). These are: (1) the establishment of a binding and (2) the
breaking of a binding (unbinding).

The host and server modules participate in binding and unbinding as
defined in the Network Virtual Terminal Foundation Services
specification.

When a binding is established, the state variables and characteristics
of the host and server modules are initialized. Each sends an
Initiate message to the other.

When a binding is broken, the server module clears the input and
type-ahead buffers, loses knowledge of any pending read and temporary
read states (e.g., "disable all control characters"), sets the output
locking state variable to "unlock", and sets both the requested and
real output discard states to "don't discard".

No interface activity is defined at the host terminal interface
because it it assumed that the operating system can directly view the
state of the binding.

NOTE

While the Foundation Connection
Management and Mode Management functions
are specified using a subroutine
interface (i.e., a polling model which
implies the mode modules must
periodically poll, us i ng the
READ-PORTAL-BINDING-STATE,
READ-LOGICAL-TERMINAL-BINDING-STATE,
READ-PORTAL-MODE-STATE, and
READ-LOGICAL-TERMINAL-MODE-STATE
functions, to detect changes in state),
actual implementations would probably
use an event queuing mechanism as
suggested in Host Terminal Interface,
Section 2.1.

4.15 Protocol Evolution

Extensibi
guiding
following
using the
on1 y acro

lity is a requirement of this specification. The philosophy
the operation of a system in meeting this goal is the
. Compatibility is the responsibility of the implementation
higher version of the protocol. Compatibility is guaranteed

s s one major version number (that part of the version number
before the decimal point) of the protocol and means the higher version
must use a subset of its protocol that is consistent with correct
operation of the implementation using the lower numbered version of
the protocol. Undefined fields, subfields and illegal values are
protocol errors except for the Initiate message where they are ignored
s o the version numbers can be exchanged).

4.16 Network Command ~erminal Protocol Messages

The following notation is used to describe the protocol messages:

field (length) : coding = description of field.

where

field = the name of the field being described.

length = the length of the field, which can be indicated in one of
three ways:

1. A number meaning number of 8-bit bytes (octet).

2. A number followed by a "B" meaning number of bits.

3. The letters "I-n" means this is an image field, with n
being a number that specifies the maximum length of the
field in 8-bit bytes. The image is preceded by a 1-byte
count of the length of the remainder of the field. Image
fields are variable in length and may be null (count=O).
All 8 bits of each byte are used as information bits.
The meaning and interpretation of each image field is as
defined with that specific field.

4. "(length)" omitted -- the size of the field is not self
defining. The field length is determined from the total
size of the protocol message by subtracting the position
of the start of the field from the total size of the
message. (length) is omitted to circumvent the 255-byte
limitation of the (I-n) specification. (length) can be
omitted only where the field is the final field in the
message.

coding = the representation type used,

where

A = 7-bit ASCII

B = binary

BM = a bit map of "length" bytes, which may contain
subfields. A BM field is described as follows:

..AA .BBB depicts bits 0-7 in a byte (grouped for
convenience into two hex-digit sections). The
low-order bit is on the right. A dot (. I
means that the corresponding bit is reserved;
it must be transmitted as zero. One or more
capital letters (e.g., AA) define a subfield
whose width is equal to the number of
identical letters. The values of each such
subfield are defined independently. In this
example, the AA subfield would have value 0-3
defined, and the BBB subfield would have
values 0-7 defined.

C = a binary field containing the constant value shown to
the right of the equal sign.

The following rules apply to the notation:

1. If length and coding are omitted, field represents a number
of subfields specified in the description.

2. Any bit or field described as "reserved" shall be zero unless
otherwise specified.

3. All fields are presented to the Terminal Communication
Services with the least-significant byte first. In an ASCII
field, the left-most character is contained in the low-order
byte.

4. All numbers are in decimal unless otherwise specified.

5. Byte positions within protocol messages and fields within
messages all start at zero (0).

4.16.1 General Message Format - All protocol messages have the
following form:

MSGTYPE MSGDATA

where

MSGTYPE (1) : B = This field contains one of the following message
types:

Value

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Message
- - - - - - -
Initiate
Start Read
Read Data
Out-of-band
Unread
Clear Input
Write
Write Completion
Discard State
Read Characteristics
Characteristics
Check Input
Input Count
Input State
reserved for VMS
reserved for VMS
reserved for VMS

In the message descriptions below, the entire message format,
including MSGDATA, is described for each message. For each message
type, the value of MSGTYPE is considered a constant.

A "character pointer" is an integer defining the position of a
character in a buffer. The first character in a buffer has position
0.

4.16.2 Initiate (H <--> S) - This message initiates command terminal
protocol on a binding

MSGTYPE FLAGS VERSION PARAMETER MESSAGES

where

MSGTYPE (1) C = 1

FLAGS (1) C = O

VERS I ON

PARAMETER

= A field identifying the protocol and
software (implementation) version numbers.

eld is subdivided as follows: This fi

VERS I ON

where

VERS I ON

ECO(1)

MOD(1)

ECO MOD REVISION

1) : B = protocol version number

: B = E C O number for this
version of the protocol

: B = customer modification
number

 REVISION(^): A = software revision number

= A field containing a repeating parameter
set (there will be as many instances of the
parameter set as are necessary). The
parameter set consists of two subfields as
follows:

PARMTYPE VALUE

where

PARMTYPE(1): B = parameter type which
specifies the purpose of
the following VALUE
subfield. It assumes the
following values:

Value Meaning
----- -------
0 Illegal
1 The VALUE subfield (valid in both

directions) specifies the maximum
size protocol message the sender of
the Initiate message can accept from
its partner on the binding. As a
lower bound, a server must be able
to handle protocol messages of at
least 132 (data) + 5 (CTERM header)

+ 2 (Foundation header) bytes = 139
bytes in length; a host must be able
to handle protocol messages of at
least 80 (data) + 8 (CTERM header) +
2 (Foundation header) bytes = 90
bytes in length.
The VALUE subfield is the maximum
size (in bytes) input buffer that a
server can support; a host can not
request, in the MAX-LENGTH field of
the Start Read message, a Read which
exceeds this value. Servers must be
able to handle at least an 80 byte
input buffer. A host must be able
to handle a protocol message of size
input buffer size + 8 (CTERM header)
+ 2 (Foundation header) bytes =
input buffer size + 10 bytes. Valid
only in the server to host (H <---
S) direction.
The VALUE subfield is a bit map
specifying which CTERM messages are
supported by this implementation
(the system transmitting this
Initiate message). A system
indicates a message type is
supported b Y setting the
corresponding bit in the bit map to
one (1). The bits of the full bit
map are numbered from 0 through 255.
Bit 0 of the bit map is not used.
The next 255 bits in the full bit
map correspond to the 255 possible
CTERM messages, where MSGTYPE = 1
corresponds to bit 1 of the full bit
map, . , and MSGTYPE = 255
corresponds to bit 255. The full
bit map is contained in 32 bytes;
this field is transmitted low-order
byte to high-order byte. Within a
byte, the bits are transmitted
low-order bit to high-order bit.
Where there are trailing zero bytes
a s will usually be the case), the
trailing zero bytes are not
transmitted and the count is
adjusted accordingly.

Support of the first 14 CTERM
messages is mandatory. The TRG will
maintain a registry of optional
CTERM messages. Receipt of an
unsupported message type is a
protocol error.

VALUE(1-255) = Value o f spec i f i ed
parameter.

4.16.3 Start Read (H ---> S) - This message requests a read and
describes an input buffer to the server.

MSGTYPE FLAGS MAX-LENGTH END-OF-DATA TIMEOUT
END-OF-PROMPT START-OF-DISPLAY LOW-WATER
TERMINATION-SET DATA

where

MSGTYPE (1) C = 2

FLAGS (2) : BM = Flags:EE ZZQT NDDD I I K V FCUU

UU = underflow-handling definition
0: ignore underflow
1: write BEL to terminal
2: terminate

C = "clear type-ahead" flag
0: don't clear type-ahead
1: clear type-ahead

F = "formatting" flag
0: no special action
1: if last character output was CR,

output LF; also, if first
character of preloaded input is
LF, ignore it.

V = "terminate on vertical change" flaq
0: do not terminate on vertical

position change
1: terminate read if there is a

vertical position change on the
presentation device while echoing
an input character

K = "continuation read" flaq
0: this is not a continuation of a

previous read
1: this read is a continuation of a

previous read which terminated on
some condition other than that
specified for the user's Read
request. It indicates that input
data from the previous read is
buffered in the host. It is used
for distributed input editing; in
particular, delete character and
delete word processing

NOTE

When this flag has the
value 1, the UU flag
bits above must have the
value 2 ("terminate"
value) .

I1 = "raise input" flag
0: parameter not present in Read

request -- use characteristic
1: no conversion for this Read only
2: for this Read only, convert

lowercase alphas to uppercase

DDD = disable control definition
0: parameter not present in Read

request -- use characteristics
1: disable "U and "R only
2: disable all editing control

characters
3: disable all control characters

except XON and XOFF

= "no-echo" flag
0: echo according to characteristics
1: do not echo input characters

(this read only) regardless of
characteristics value

= "terminator echo" flag
0: do not echo terminator
1: echo terminator

= TIME-OUT field present flag
0: TIME-OUT field not present in

Read request -- the default is an
infinite time-out, no time-out).

1: TIME-OUT field present in Read
request

= "non-default terminator set" flag
0: use terminator set specified by

previous Read -- no terminator
set specified and
NON-DEFAULT-TERMINATOR-SET flag
is TRUE

1: use terminator set specified by
this Read

2: use universal termination set
i.e., all control characters
except "R, "U, "W, BS and HT)

MAX-LENGTH (2)

END-OF-DATA (2)

TIMEOUT (2)

END-OF-PROMPT (2)

EE = "recognize input escape sequences"
flag
0: parameter not present in Read

request -- use characteristic
1: do not perform input escape

sequence recognition for this
Read only

2: for this Read only, perform input
escape sequence recognition

: B = Input buffer length, in characters.

: B = Character position of the character after
the last character currently in the buffer.

: B = Intercharacter arrival time in seconds. A
timeout break condition will occur if
another character does not arrive within
this time period. A value of 0 means take
the characters currently in the type-ahead
buffer and terminate the Read immediately
without waiting for further input.

: B = Character position of first character
beyond the Read-only (prompt) section of
the buffer.

START-OF-DISPLAY(2) : B = Character position of the first character
to be (re-)displayed.

LOW-WATER (2) : B = Same field as in Read Data (below).
(Generally set to END-OF-DATA on a Start
Read, but does not have to be).

TERMINATION-SET
(1-32) : BM = The termination set for the Read. The full

256-bit bit-mask is contained in 32 bytes.
However, if there are trailing zero bytes
in the 32-byte bit-mask (as will generally
be the case), trailing zero bytes are not
transmitted. This field is transmitted
low-order byte to high-order byte. Within
a byte, the bits are transmitted low-order
bit to high-order bit. Therefore, for
example, the character whose value is 65 is
a terminator for this read only if the 2nd
bit (bits numbered 1 to 8) of the 9th byte
(bytes numbered 1 to 32) is set.

DATA : A = Input buffer data

4.16.4 Read Data (H <--- S) - The server uses this message to
transfer input data to the host.

MSGTYPE FLAGS LOW-WATER VERTICAL-POSITION
HORIZONTAL-POSITION TERMINATION-POSITION DATA

where

MSGTYPE (1) C = 3

FLAGS (1) : BM = Flags: ... T CCCC
CCCC = completion code

0: termination character
1: valid escape sequence
2: invalid escape sequence
3: out-of-band character
4: input buffer full
5 : t imeout
6: unread
7: underflow
8: absentee token
9: vertical position change
10: line break
11: framing error
12: parity error
13: receiver over-run

NOTE

The completion code for an
immediate timed read (i.e.,
zero timeout) will be
"timeout" only if no other
termination condition (e.g.,
"termination character") is
encountered in processing
the characters in the
type-ahead buffer.

T = "more type-ahead data" flag
0: there is no data in the

type-ahead buffer
1: there is data in the type-ahead

buffer

LOW-WATER (2) : B = Character position of the last character
that has not been modified on this Read.

VERTICAL-POSITION
1) : B = The relative vertical position change

(number of lines) on the presentation
device since the beginning of this read.

HORIZONTAL-POSITION
(1) : B = The relative horizontal position change on

the presentation device since the beginning
of this READ.

TERMINATION-POSITION
(2) : B = Number of DATA characters (excluding

terminators, escape sequences, etc.) in the
input buffer. Thus, when added to the
address of the head of the buffer, it
points to the character after the last data
character in the buffer; if there is a
terminator or escape sequence in the
buffer, it points to the terminator or the
first character of the escape sequence.

DATA : A = Input buffer data

NOTE

The VERTICAL and HORIZONTAL-POSITION
parameters are undefined under the
following circumstances:

1. Unread received by server.

2. Read with escape sequences embedded
in either PROMPT or DATA fields.

3. Full duplex mode (i.e., unlocked
Read Echos and Writes are taking
place simultaneously).

The host resets its cursor position to
0,O under the following conditions:

1. A Read is received and started by
the server.

2. A Read completes for any reason.

3. The input buffer is redisplayed.

4 . 1 6 . 5 Out-of-Band (H <--- S) - This message contains an out-of-band
character which has been received by the server.

MSGTYPE FLAGS CHARACTER

where

MSGTYPE (1) C = 4

FLAGS (1) : BM = Flags: D
D = discard control

0: do not alter output discard state
1: set output discard state to

"discard"

CHARACTER (1) : A = Out-of-band character received.

4.16.6 Unread (H ---> S) - Requests the termination of the current
Read, if there is a Read active.

MSGTYPE FLAGS

where

MSGTYPE (11

FLAGS (1)

4.16.7 Clear Input
and input buffers.

MSGTYPE FLAGS

where

MSGTYPE (1)

FLAGS (1)

c = 5

: BM = Flags: C
C = Unread condition

0: unconditional Unread
1: only do unread if the input and

type-ahead buffers are empty

(H ---> S) - Requests clearing of the type-ahead

--> S) - Carries function request flags and, 4.16.8 Write (H -
optionally, output data.

MSGTYPE FLAGS PREFIX-VALUE POSTFIX-VALUE DATA

MSGTYPE (1) C = 7

FLAGS (2) : BM = Flags: TSQQ PPEB DLUU

UU = lock handling definition
0: unlock; default value for use if

locking parameter not specified
in WRITE request

1: lock before output; do not unlock
after outout

2: lock before output and unlock
after output

3: lock before output and unlock
after output; redisplay after
output

= "newline" flag
0: no special action
1: at the end of the Write, output a

line-feed and set an internal
"skip-line-feed" flag so that if
the first character in the next
Write is a line-feed, double
spacing is avoided

= "set output discard state" flag
0: do not modify output discard

state
1: set output discard state to "do

not discard" (before transmitting
this data, if any)

= "beginning of message" flag
0: the data contained in this

message is, not the beginning of a
host data message

1: the data contained in this
message is the beginning of a
host data message

= "end of message" flag
0: the data contained in this

message is not the end of a host
data message

1: the data contained in this
message is the end of a host data
message

= prefix code
0: there is no prefix data; ignore

the PREFIX-VALUE field
1: there is a "newline" count

contained in the PREFIX-VALUE
field

2: there is a prefix character
contained in the PREFIX-VALUE
field

= postfix code
0: there is no postfix data; ignore

the POSTFIX-VALUE field
1: there is a "newline" count

contained in the POSTFIX-VALUE
field

2: there is a postfix character
contained in the POSTFIX-VALUE
field

S = "completion status requested" flag
0: do not send a Write Completion

message on completion of this
request

1: send a Write Completion message
on completion of this request

T = "transparent" flag
0: no special action
1: data from this Write message is

written to Foundation Services
us i ng transparent
Write-characteristic

PRE-FIX-VALUE (1) : B = 0, pre-fix newline count, or character, as
defined by the PP flag.

POST-FIX-VALUE (1) : B = 0, post-fix newline count, or character, as
defined by the QQ flag.

DATA : A = Output data. his field may be absent.)

4.16.9 Write Completion (H <--- S) - Carries write completion
information.

MSGTYPE FLAGS HORIZONTAL-POS VERTICAL-POS

where

MSGTYPE (1) C = 8

FLAGS (1) : BM = Flags: D
D = discard status

0: no output lost due to output
discard (control-0) by user

1: some output lost due to output
discard (control-0) by user

HORIZONTAL-POS (2) : B = The relative horizontal position change on
the presentation device since the beginning
of this Write.

VERTICAL-POS (2) : B = The relative vertical position change
(number of lines) on the presentation
device since the beginning of this Write.

NOTE

The VERTICAL and HORIZONTAL-POS
parameters are undefined under the
following circumstances:

1.

2 .

The
0,o

1.

2 .

3 .

WRITE with embedded escape
sequences.

Full duplex mode (i.e., unlocked
Read echos and Writes are taking
place simultaneously).

host resets its cursor position to
under the following conditions:

A Read is received and started by
the server.

A Read completes for any reason.

The input buffer is redisplayed.

4.16.10 Discard State (H <--- S) - Carries the output discard state
most recently selected by the terminal user.

MSGTYPE FLAGS

where

MSGTYPE (1)

FLAGS (1) : BM = Flags: D
D = discard control

0: output is to be discarded
1: output is not to be discarded

4.16.11 Read Characteristics (H ---> S) - Requests the current values
of selected terminal characteristics to be returned to the host.

MSGTYPE FLAGS PARAMETER

where

MSGTYPE (1) C = 1 0

FLAGS (1) C = O

PARAMETER = This field may be repeated multiple times.
This field contains a parameter set as two
subfields as follows:

SELECTOR CHARACTER

where:

SELECTOR(2) : BM = a characteristic
selector (see the
Selector Values for
Characteristics,
Section 4.17)

CHARACTER(1) : A = a subselector used only
when the read
characteristics is for
the
CHARACTER-ATTRIBUTES
characteristic. This
field is omitted if
this is not for the
CHARACTER-ATTRIBUTES
characteristic

4.16.12 Characteristics (H <--> S) - In the host-to-server direction,
modifies specified terminal characteristics. In the server-to-host
direction, contains the values of previously requested
characteristics.

MSGTYPE FLAGS PARAMETER

where

MSGTYPE (I) C = 1 1

FLAGS (11 C = O

PARAMETER = his field may be repeated multiple times.
This field contains a parameter set as two
subfields as follows:

SELECTOR VALUE

where:

SELECTOR(2) : BM = a characteristic
selector (see Section
4.17)

VALUE = value field for
characteristic (see
Section 4.17.2 for
format o f each
characteristic)

4.16.13 Check Input (H ---> S) - Requests the count of characters in
the input and type-ahead buffers (combined) to be returned in an Input
Count message.

MSGTYPE FLAGS

where

MSGTYPE (1) : C = 12

FLAGS (1) C = O

4.16.14 Input Count (H <--- S) - Carries the count of characters in
the input and type-ahead buffers (combined); returned in response to a
Check Input message.

MSGTYPE FLAGS COUNT

where

MSGTYPE (1) : C = 13

FLAGS (1) C = O

COUNT (2) : B = The requested input character count

4.16.15 Input State (H <--- S) - Carries a change from zero to
non-zero or vice versa in the count of characters in the input and
type-ahead buffers (combined).

MSGTYPE FLAGS

where

MSGTYPE (1)

FLAGS (1) : BM = Flags: Z
Z = count change flag

0: count became zero
1: count became non-zero

4.16.16 Reserved for VMS -

MSGTYPE FLAGS

where

MSGTYPE (1)

4.16.17 Reserved for VMS -

MSGTYPE FLAGS

where

MSGTYPE (1) C = 1 6

4.16.18 Reserved for VMS -

MSGTYPE FLAGS

where

MSGTYPE (1) C = 1 7

4.17 Selector Values for Characteristics

Characteristics SELECTOR values are carried in Read characteristics
and characteristics messages. A SELECTOR is a 16-bit value whose
format is:

LLLLLLLL 1 1 1 1 1 1 1 1

LLLLLLLL : type of terminal characteristic identifier:

0: Foundation Physical Terminal
Characteristic

1: Foundation Logical Terminal
Characteristic

2: Network Command Terminal Logical
Terminal Characteristic

3-127: RESERVED for future expansion

characteristic identifier (as defined in
the table below for Network Command
Terminal characteristics or in the Network
Virtual Terminal Foundation specification
for the Foundation Characteristics)

Characteristic identifier types in the range 128 thru 255 are reserved
for implementors for "local" characteristics that exist only within
the host or server that implements them. This allows implementations
to define "local" characteristics at will with some reasonable
guarantee that these "local" characteristics will neither impact nor
interfere with other TSA implementations. It is a protocol error to
receive a characteristic identifier in the range 128-255 from a remote
implementation.

Characteristics VALUES are carried in characteristics messages. The
form of a VALUE depends on its type. The type of each characteristic
is defined in the tables below. Types are Boolean, Bit Map, Integer,
String, and Compound. The format of each type is defined below.

Boolean: ~ ~ (1 1 Low-order bit is the value (T = 1, F = 0)

Bit Map: BM(x) x specified individually

Integer: B(2) 16-bit integer

String: A(1-255) String of characters

Compound : Compound characteristics value -- the value
contains more than one field. The format of
each compound characteristic value is defined
in Section 4.17.2.1.

4.17.1 Foundation-maintained Characteristics - The following
characteristics are maintained by the Foundation Services in the
server system. This is not a complete list of Foundation
characteristics, but, rather, a list of those Foundation
characteristics necessary for the correct operation of the Network
Command Terminal. They may be read and, if enabled, written via the
command terminal protocol. Refer to the Network Virtual Terminal
Foundation Services specification for the identifier values for these
characteristics and a definition of semantics and range of values for
each characteristic.

Characteristic
-------------- Type

MODE-WRITING-ALLOWED Boolean

TERMINAL-ATTRIBUTES Bit Map BM(2)

TERMINAL-TYPE String

OUTPUT-FLOW-CONTROL Boolean

OUTPUT-PAGE-STOP Boolean

FLOW-CHARACTER-PASS-THROUGH Boolean

INPUT-FLOW-CONTROL Boolean

LOSS-NOTIFICATION Boolean

LINE-WIDTH Integer

PAGE-LENGTH Integer

Characteristic

Type ----

STOP-LENGTH

CR-F I LL

LF-FILL

WRAP

HORIZONTAL-TAB

VERTICAL-TAB

FORM- FEED

INPUT-SPEED

OUTPUT-SPEED

CHARACTER-SIZE

PARITY-ENABLE

PARITY-TYPE

MODEM-PRESENT

AUTO-BAUD-DETECT

MANAGEMENT-GUARANTEED

SWITCH-CHARACTER-1

SWITCH-CHARACTER-2

EIGHT-BIT

TERM-MANAGEMENT-ENABLED

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Boolean

Integer

Boolean

Boolean

Boolean

String

String

Boolean

Boolean

17.2 Handler-Maintained Characteristics - The following
aracteristics are maintained by the Network Command Terminal module
the server system. They may be read and written via the command
rminal protocol.

Characteristic

IGNORE-INPUT 1 Boolean

CHARACTER-ATTRIBUTES 2 Compound

CONTROL-0-PASS-THROUGH 3 Boolean

Characteristic

RAISE-INPUT

NORMAL-ECHO

INPUT-ESCAPE-SEQUENCE-
RECOGNITION-ENABLE

OUTPUT-ESCAPE-SEQUENCE-
RECOGNITION-ENABLE

INPUT-COUNT-STATE

AUTO-PROMPT

ERROR-PROCESSING

Boolean

Boolean

Boolean

Boolean

Integer

Boolean

Bit Map BM(1)

4.17.2.1 CHARACTER-ATTRIBUTES Compound Characteristic - This is a
fixed length characteristic.

CHARACTER MASK ATTRIBUTES

where

CHARACTER (1) : A = Character to which the following attributes
apply.

MASK (1) : BM = An 8-bit bit mask which is used to select
bits in the following attributes field
which are to be changed. Bits in the
ATTRIBUTES field which are to retain their
old value (to be left unchanged), should
have the corresponding bits in the MASK
field set zero; significant bits in the
following ATTRIBUTES field should have the
corresponding bits in the MASK field set to
1.

ATTRIBUTES (1) : BM = Attribute-values: . FEE DIOO
00 = out-of-band handling

0: not out-of-band character -- used
to cancel any previous
out-of-band definition (initial
default for all characters is NOT
out-of-band)

1: immediate clear (valid only for
control characters)

2: deferred clear (valid only for
control characters)

3: immediate hello

I = include flag -- applies only when
character is "immediate hello"
0: do not include character in input

data stream (default)
1: include character in input data

stream

D = out-of-band discard flag; whether a
"clear" out-of-band character sets
the output discard state to "discard"
0: do not alter output discard state

(default
1: set output discard state to

"discard"

EE = control character echoing
characteristic
0: don't echo the character
1: echo the character as itself
2: echo in standard form (initial

default value for all control
characters) where standard form
is

CR echoes as CR,LF
LF echoes as CRrLF
ESC echoes as "$" (dollar sign)
all other characters echo as a
I1 A It (up-arrow) followed by the
printing character equal to
<(VALUE+64) mod 128> (for
example, VT echoes as ^ K)

3: echo in standard form followed by
echo as itself

F = disable/enable special character
function switch. The special
character function switch is used to
enable or disable the special
functions associated with certain
well known control characters, i.e.r
OUTPUT-DISCARD control-O),
DELETE-CHARACTER (DEL), DELETE-WORD
(control-W), CLEAR-INPUT (control-U),
CLEAR-TYPE-AHEAD control-X),
REDISPLAY-INPUT (control-R), and
QUOTE (control-V).

0: disable special function for
character

1: enable special function for
character (initial default value
for control characters listed
above)

APPENDIX A

Escape Sequence Recognition Algorithm

The following description of an algorithm for recognizing escape
sequences is provided for the convenience of implementors.

The escape sequence recognizer can be described as a sequence of
simple pattern matching rules. Each rule has an optional label, a
match specification, and a label to branch to if the match is
successful. Match specifications can be of two kinds: a quoted
character, or a range of character codes, given as a pair of decimal
numbers (minimum:maximum).

Processing begins by applying the first rule to the first character
after an ESC. If a match succeeds, the rule designated by the success
branch is applied to the next character in the stream. If a match
fails, the next rule in the sequence is applied to the same character.

A special flag, " * " , (indicated by the success branch) means that if
this match succeeds, the recognition of an escape sequence is
complete; if the match fails, the characters examined are not part of
any valid escape sequence.

The comment included with a rule applies to the current character, or
to the escape sequence being recognized, if the match succeeds.

VT52 sequence
,I I1

II ,,
VT52 seq. (fixed length)
ANSI control sequence
intermediate character
final character

ANSI sequence parameter
intermediate character
final character

fixed length VT52 seq. ,, ,,

DECnet Digital Network Architecture
Network Virtual Terminal
Command Terminal Protocol
AA-DY88A-TK

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of userlreader that you most nearly represent.

0 Assembly language programmer
Higher-level language programmer

0 Occasional programmer (experienced)
0 User with little programming experience

Student programmer
Cl Other (please specify)

Name Date

Organization

City State Zip Code
or

Country

- - - - -Do Not Tear - Fold Here and Tape - I
1

1 BUSINESS REPLY MAIL 1
FIRST CLASS PERMIT NO33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
1925 ANDOVER STREET TWO/E07
TEWKSBURY, MASSACHUSETTS 01 876

No Postage

Necessary

i f Mailed in the

United States

I

- - -- Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - -
I

- -7

