
Digital Network Architecture I

Network Virtual Terminal
Foundation Service*
Order ' NU. AA-DVaflA-TK

DECnet
Digital Network Architecture
(Phase IV)

Network Virtual Terminal
Foundation Services
Order No. AA-DY89A-TK

December 1984

This document describes the Foundation (FOUND) services, which provide the
mode-independent terminal handling services required by the Terminal Software
Architecture (TSA). FOUND is a sublayer within the Application layer of the Ter-
minal Software Architecture (TSA) - and TSA is part of the Digital Network
Architecture.

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

VERSION: 2.0

To order additional copies of this document, contact your local
Digital Equipment Corporation Sales Office.

digital equipment corporation maynard, massachusetts

AA-DY89A-TK

First Printing, December 1984

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibil-
ity for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

Copyright @ 1984 by Digital Equipment Corporation

The postage-prepaid Reader's Comments form on the last page of this document requests the user's
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECmate
DECnet
DECUS
DECwriter
DIBOL

MASSBUS
PDP
PIOS
Professional
Rainbow
RSTS
RSX

RT
UNIBUS
VAX
VAXcluster
VMS
VT
Work Processor

CONTENTS

INTRODUCTION . 3 Requirements. Goals. andNon-goals 3
Relation to Digital's Terminal Software
Architecture 4 Relation to ~igital's Network Architecture 4

. Definition of Character Set 4
MODELS . 5 Logical Terminal Services 6

. Terminal Communication services 8
INTERFACES . 9 Logical Terminal Services 10 Terminal Characteristics and Counters 10

. Normal Mode Access Interface 19 Terminal Management Interface 23 Physical Connection States 26 Physical ~erminal Interface 29 Internal Operation 31 Loss Notification 32 Modeswitching 32
Position Modeling. Character Expansion and Wrapping 32 Output Flowcontrol 34
Input Flow Control 35

Terminal Communication Services 35 Logical Terminals and Portals 35
Version 1.0 Compatibility 36
Host System Connection Management Functions . 36
Server System Connection Management Functions 42 Host System Mode Management Functions 46 . . . Server System Mode Management Functions 49
Data Transfer Functions 51
Virtual Circuit Services 53

OPERATION . 55
Logical Terminal Services 55
Terminal Communication Services 55

Protocol Message Overview 55
Protocol Errors 56
Connection Management Operational Overview . . 56 Mode Management Operational Overview 60 Data Transfer Operational Overview 61

Protocol Evolution 61
Terminal Communication Protocol Messages 62

Bind Request 62
Unbind . 64
BindAccept 64
EnterMode 65
Exit Mode 65
Confirm Mode 66
No Mode 66
CommonData 66
ModeData 67

Identifiers for Foundation-maintained
Characteristics 68

APPENDIX A

TABLES

F I GURES

Standards and Suggested Standards

. Standard Mode Values A-1 Suggested Setup/Normal Mode A-2

Physical Terminal Characteristics 10
Physical Terminal Counters 13
Logical Terminal Characteristics 13 Physical Connection States 27
Physical Connection State Transition Reasons . . . 28
Portal Binding States 40
Reasons for Portal Binding State Transitions . . . 40
Logical Terminal Binding States 44
Reasons for Terminal Binding State Transitions . . 44
Host Portal Mode States 48
Reasons for Portal Mode State Transitions 48
Logical Terminal Mode States 50
Reasons for Terminal Mode State Transitions . . . 51
Terminal Communication Protocol
Message Summary 56
Logical Terminal Characteristics 68
Physical Terminal Characteristics 69

Distributed System Architectural Model 6
Logical Terminal Services Model 7
Distributed Terminal Communication
Services Model 8

1 .0 INTRODUCTION

This document describes a model for distributed terminal-handling
services in Digital systems. These services are independent of the
specific use (e.g., command handling, forms, editing) being made of
the terminal and include connection management, mode changing, and
local characteristics management.

Foundation services are part of a larger model for terminal handling
within Digital systems. This model is defined by the Digital Terminal
Software Architecture.

It is the intent of this specification to define the following:

1. The services (viz., interface functions or primitive
operations) and semantics (but not the syntax) of the
services provided by this model for foundation services
within Digital's Terminal Software Architecture

2. The communication protocol (both syntax and semantics) used
by this model to provide the defined services

It is stongly suggested that an implementation of this specification
create a sharable interface corresponding to the interface to logical
terminal services as described herein.

1.1 Requirements, Goals, and Non-goals

The requirements of the foundation services are:

o Compatibility -- to be compatible with the DECnet Network
Virtual Terminal specification, Version 1.0, dated 13 April
1979

o Connection Management -- to allow a logical terminal in a
server system to connect to a specified host;to allow a host
system to connect to a specified logical terminal

o Mode Changing -- to allow a pair of mode modules to transfer
control of a connection to a second pair of mode modules

o Terminal Management -- to allow a module implementing
terminal management functions to intercept input from a
physical terminal

o Extensibility -- to allow evolution of this specification,
particularly the protocol portion.

The goal of the foundation services is:

o Simplicity -- to be easy to understand and implement.

The non-goal of the foundation service is:

o Expansion -- to contain functions other than those required
to implement the first version of the Digital command
terminal.

1.2 Relation to Digital's Terminal Software Architecture

This document is the specification of the foundation layer of
Digital's Terminal Software Architecture.

1.3 Relation to Digital's Network Architecture

This specification describes services considered to be in the
application layer of Digital's Network Architecture.

1.4 Definition of Character Set

This specification is intended for use with Digital's 8-bit coded
character set. The term "character" means an 8-bit value from this
character set. This character set defines the names of characters
referred to in this specification (e.g., BEL) and it imposes certain
requirements on "system ports", which are points at which character
set conversion takes place. Such system ports are believed to be
within the scope of foundation services. In particular,
implementations of foundation services should include fallback
presentation and conversion between 7-bit and 8-bit environments, as
described in the standard.

2.0 MODELS

There are two components to the terminal software architecture
foundation services: logical terminal services and terminal
communication services.

Figure 2-1 presents a model of the complete terminal software
architecture. This model shows the distribution of functions between
a host system and a server system. The modules labeled "logical
terminal services" and "terminal communication services" constitute
the foundation services of the architecture. (The remaining modules
are shown in the figure as an example of the modules that would use
the foundation services.)

Figure 2-1 Distributed System Architectural Model

2.1 ~ogical Terminal Services

The logical terminal services module has three interfaces: (1) one to
modules in the mode access layer, (2) one to a terminal management
module, and (3) one to a terminal user. These interfaces as well as
pertinent internal data bases and queues are shown in Figure 2-2. All
modules and stuctures shown in Figure 2-2 are in the server system.

Figure 2-2 Logical Terminal Services Model

2.2 Terminal Communication Services

There are two terminal communication services modules: one in the
host system and one in the server system. These modules provide a
distributed communication service between mode access modules in a
host system and mode access modules in a server system as shown in
Figure 2-3. This distributed service has two interfaces; one to mode
access modules in the host system and one to mode access modules in
the server system.

........................ +
I

COMMUNICATION SERVICES 1
I

Figure 2-3 Distributed Terminal Communication Services Model

The terminal communication services modules provide three functions:
(1) logical connection of a resource (called a "portal") in the host
system with a logical terminal (the logical connection is called a
"binding"), (2) establishing and changing the mode of terminal
operation, and (3) data transfer between the host and server systems.

3 . 0 INTERFACES

This section describes four interfaces: (1) the logical terminal
services interface provided to higher level modules, (2) the terminal
communication services interface provided to higher level modules, (3)
the virtual circuit service interface used by the terminal
communication services modules to communicate with each other in a
network, and (4) the interface to a physical terminal from a server
system.

Each interface function is described as being provided by a procedure.
This interface definition technique is consistent with a software
engineering model in which many processes execute in parallel, each
requesting services from a collection of procedures. Such a model is
not generally implementable as described but can be considered
isomorphic to a model that may be implemented more directly. This
technique is used in this specification rather than a technique that
would be consistent with a different model (e.g., one in which several
processes queue events to each other) for the following reasons.

o This model explicitly states what can be considered to be an
atomic operation and what cannot.

o Race conditions tend to be more easily identified in this
mode 1.

0 Points in which two or more processes need to be synchronized
are clearly identified. h hey occur where procedures access
data shared among several callers.)

0 Significant resource allocation failures are explicitly
mode led.

Interface functions for each interface are shown throughout this
section of the specification and are formatted as follows:

The function name is followed first by a list of arguments and return
values that are enclosed in parentheses. The arguments appear first
and are separated from the return values by a semicolon (;) . Optional
arguments are enclosed in brackets ([. I) .

Example:

READ-CHARACTER (logterm id; return,character)

The following list defines some of the return values that may appear
with a function definition. Error return values whose definitions are
obvious are not described -- these are: invalid portal id; invalid
logical terminal id; invalid state, and invalid argument.

1. The term "buffer" syntactically refers to a combination of
address and length information and, when data is being given
to a procedure, semantically refers to the data contained in
the memory defined by the address and length.

2. The term "logical terminal id" refers to a number that
uniquely identifies a logical terminal in a server system.

3. The term "physical terminal id" refers to a number in the
range (1 - maximum physical terminal id) that uniquely
identifies a physical terminal in a server system.

4. The term "portal id" refers to a number in the range (1, -
maximum portal id) that uniquely identifies a portal in a
host system.

5. The term "character" refers to a value from a character set
(see the terminal characteristics definitions in Section
3.1.1).

3.1 Logical Terminal Services

The primary functions of the logical terminal services module are to
move characters between devices and higher-level modules, to store
logical terminal characteristics, to switch a physical terminal's data
stream between a terminal management module and a normal mode access
module, and to act on certain terminal characteristics. These
functions are described from the point of view of the users of the
logical terminal services module.

3.1.1 Terminal Characteristics and Counters - Table 3-1 defines
physical terminal characteristics managed by the logical terminal
services module. A future version of this specification may define
additional characteristics or enhance the definitions given below.

Table 3-1 Physical Terminal Characteristics

Characteristic

Meaning

The bit-per-second input rate, ignoring
fractions, of the physical terminal. A
16-bit integer (the value 65,535 means
any value greater than or equal to
65,535).

The bit-per-second output rate of the
physical terminal. A 16-bit integer
(the value 65,535 means any value
greater than or equal to 65,535).

The bit-width of a character (a value of
5,6,7, or 8) . See the comment following
this table regarding the relation of
this characteristic to the definition of
character set.

(continued on next page)

Table 3-1 (Cont.): Physical Terminal Characteristics

Characteristic

Meaning

Whether or not the eighth bit of
8-bit-wide characters is cleared. A
Boolean value.

TRUE = clear 8th bit (default value)
FALSE = do not clear 8th bit

NOTE

For "pass-all" operation, the
8th bit is never cleared.

Whether or not a parity bit is generated
on output and checked on input. (This
bit is in addition to the data bits and
not counted in the Character-size
characteristic.) When enabled, a parity
bit is treated as the most significant
bit of a character. A Boolean value.
See the comment following this table
regarding the relation o f this
characteristic to the definition of
character set.

TRUE = parity is enabled
FALSE = parity is not enabled

The type of parity. One of the
following:

2 ODD Parity

3 CLEAR (forces parity bit to 0)

4 SET (forces parity bit to 1)

Whether or not modem control signals (as
reflected in the physical terminal
interface) are present for this
terminal. A Boolean value.

TRUE = modem signals are present

FALSE = modem signals are not present

(continued on next page)

Table 3-1 (Cont.): Physical Terminal Characteristics

Characteristic

Mean i ng

Whether or not the automatic baud detect
algorithm is executed for this terminal.
A Boolean value.

TRUE = the automatic baud detection
algorithm is executed

FALSE = the automatic baud detection
algorithm is not executed

Whether or not a mode access module can
disable the human physical terminal
user's abi 1 ity to enter terminal
management mode (as described below). A
Boolean value.

TRUE = the user is guaranteed to be
able to enter terminal
management mode from the
physical terminal

FALSE = a mode access module may disable
the entry of terminal management
mode from the physical terminal

Terminal-management-enabled Whether or not the host will allow the
terminal user to exercise terminal
management capabilities. A Boolean
value.

TRUE = terminal management is enabled
(default)

FALSE = terminal management is disabled

NOTE

This characteristic is forced
TRUE if "management-guaranteed"
is TRUE.

The first of the two characters that, on
entry, cause a switch between normal and
terminal management modes (see Section
3.1.5.2).

The second of the two characters that,
on entry, cause a switch between normal
and terminal management modes (see
Section 3.1.5.2).

The combination of the Character-size and Parity-enable
characteristics allow for the definition of 5-,6-,7-,8-, or 9-bit
characters. However, the character set used with this specification
contains only 8-bit characters (as defined in Table 3-1). On both
output and input, a character with fewer than 8 bits is padded with
high order zero bits to form an 8-bit character, and a 9-bit character
has the high order bit truncated.

Table 3-2 defines physical terminal counters managed by the logical
terminal services module.

Table 3-2 Physical Terminal Counters

Connections The number of times the physical terminal has
entered the CONNECTED state. A 16-bit value.

The number of characters sent to the physical
terminal. A 32-bit value.

Chars-received The number of characters received from the
physical terminal. A 32-bit value.

Parity-errors The number of parity errors. A 16-bit value.

Overruns The number of overruns. A 16-bit value.

Seconds

The number of framing errors. A 16-bit
value.

The number of seconds since the counters were
last zeroed. A 16-bit value.

Table 3-3 defines logical terminal characteristics managed by the
logical terminal services module.

Table 3-3 Logical Terminal Characteristics

Characteristic

Mode-writing-allowed Whether or not the physical terminal
characteristics defined in Table 3-1 or
the logical terminal characteristics
defined in this table (but not this
characteristic) can be written by a mode
access module. A Boolean value.

TRUE = t h e characteristics can be
written

FALSE = the characteristics cannot be
written

(continued on next page)

Table 3-3 (Cont.): Logical Terminal Characteristics

Characteristic

Attributes of the logical terminal. A
bit map of length two bytes, with the
bits defined as follows:

Bit Definition
--- ----------
0 1 = known, 0 = unknown

1 1 = video, 0 = hardcopy

2-15 reserved

The "model" of the logical terminal. A
string containing between 0 and 10
characters. This may or may not be the
kind of physical terminal that
corresponds to the logical terminal. It
means that terminal-specific escape
sequences or other traits are obtained
when reading from or writing to the
terminal from a normal mode access
module. The strings for the
terminal-type are to be obtained from
the OPTION/MODULE LIST by taking the
characters of the Digital Terminal model
number up to but not including the first
hyphen. The following strings are
examples of "known" terminal types:

(continued on next page)

Table 3-3 (Cont.): Logical Terminal Characteristics

Whether or not one type of flow control
is exerted by the logical terminal
services module on output. A Boolean
value. his value is independent of
the Output-page-stop value described
below.

TRUE = an input XOFF stops output; an
input XON starts output

FALSE = no interpretation of XOFF or XON
on input

Whether or not a second type of flow
control is exerted by the logical
terminal services module on output. A
Boolean value. (This value is
independent of the Output-flow-control
value described above.)

TRUE = the end of a page stops output;
an input XON starts output

FALSE = no interpretation of end-of-page
condition or XON input

Flow-character-pass-through Whether or not an input character that
affects output flow control (control-S
or control-Q) is passed through or
discarded on input. A Boolean value.

TRUE = an enabled flow control
character is passed to the mode
access layer as a normal input
character

FALSE = an enabled flow control
character is discarded on input

Whether or not flow control is exerted
by the logical terminal services module
on input. A Boolean value.

TRUE = an XOFF is sent to the terminal
when the logical terminal
services module is becoming
short o f receive memory
resources, and an XON is sent
when the logical terminal module
has more memory resources
available

(continued on next page)

Table 3-3 (Cont.): Logical Terminal Characteristics

Characteristic

Meaning

Input-flow-control (cont.) FALSE = no flow control is exerted on
input

Stop-length

CR-f ill

Whether or not notification is sent to
the physical terminal when an input
character is lost due to lack of memory.
A Boolean value. Even when this value
is true, loss notification may not be
possible either due to the server
system's inability to detect all lost
characters or due to a lack of memory
resources for queueing the loss
notification.

TRUE = a BEL is sent to the terminal if
an input character is lost

FALSE = no notification is sent to the
terminal if an input character
is lost

The width of a "line". "Line" has
meaning in the logical terminal services
module when the wrap characteristic
indicates either hardware or software
wrapping (see Wrap characteristic
described below). A 16-bit integer.

The length of a "page" as used by the
"vertical tab and form feed expansion"
algorithms (see the Vertical-tab and
Form-feed characteristics). An 8-bit
integer.

The length of a "page" as used by the
"output page stop" algorithm (executed
when the Output-page-stop characteristic
is TRUE). An 8-bit integer.

The number o f nu1 1 characters
automatically sent to the physical
terminal after a carriage return (CR) is
written. An 8-bit integer.

The number o f nu1 1 characters
automatically sent to the physical
terminal after a line feed (LF) is
written. An 8-bit integer.

(continued on next page)

Table 3-3 (Cont.): Logical Terminal Characteristics

Characteristic

Wrap An integer value indicating if character
wrapping is provided on output and, if
so, how it is provided. A future
version of this specification may
enhance this function. One of the
following:

Value Definition
----- ----------

1 It is assumed that the
hardware is not wrapping, the
software is not wrapping, and
no truncation of output is
performed.

2 It is assumed that the
hardware is not wrapping, the
software is not wrapping, but
the software is discarding all
data whose modeled horizontal
position would be greater than
Line-width.

3 The hardware is wrapping, and
the logical terminal services
module is attempting to track
horizontal position (this is
identical to value 4 except
that no carriage return or
line feed characters are
inserted in the output
stream).

4 The logical terminal services
module is performing wrapping
by inserting carriage return
and line feed characters in
the output stream.

(continued on next page)

Table 3-3 (~ont.): Logical Terminal Characteristics

Characteristic

Vert ical-tab

An integer value indicating how a
horizontal tab (HT) is handled on
output. A future version of this
specification may enhance this function.
One of the following:

Value Definition
----- ----------
1 The hardware is handling

horizontal tabs, and the
logical terminal services
module is attempting to track
horizontal position; it is
assumed that horizontal tabs
move the horizontal position
to the next multiple of 8.

The logical terminal services
modu le is performing
horizontal tab expansion by
inserting spaces in the output
stream to the next horizontal
position that is a multiple of
8.

An integer value indicating how a
vertical tab (VT) is handled on output.
A future version of this specification
may enhance this function. One of the
following:

Value Definition
----- ----------
1 The hardware is handling

vertical tabs, and the logical
terminal services module is
attempting to track vertical
position; it is assumed that
vertical tabs move the
vertical position to the next
multiple of 11.

The logical terminal services
module is performing vertical
tab expansion by inserting
line feeds in the output
stream to the next vertical
position that is a multiple of
11.

(continued on next page)

Table 3-3 (Cont.): Logical Terminal Characteristics

Characteristic

Vertical-tab (cont.) Value Definition
----- ----------
3 The logical terminal services

module is converting a
vertical tab to a form feed
and handling it as specified
by the Form- f eed
characteristic.

Form-f eed An integer value indicating how a form
feed (FF) is handled on output. A
future version of this specification may
enhance this function. One of the
following:

Value Definition ----- ----------
1 The hardware is handling form

feeds , and the logical
terminal services module is
attempting to track vertical
posit ion.

2 The logical terminal services
module is performing form feed
expansion by inserting line
feeds in the output stream to
a vertical position that is an
integral multiple of
Page-length lines from the
last form feed.

3.1.2 Normal Mode Access Interface - The interface used by normal
mode access modules contains.the following functions:

1. read the set of logical terminal id's

2. read a character

3. write a character

4. read a terminal characteristic

5. write a terminal characteristic

6. disable terminal management switchover

7. enable terminal management switchover

8. reset page-stop-position

The first two functions that follow allow a mode access module to
obtain the active set of logical terminal id's. (These functions are
an artifact of the subroutine modeling technique used in this
specification. The information implied by them would probably be
conveyed in a more straightforward manner in an implementation.)

GET-FIRST-LOGICAL-TERMINAL-ID (;logterm id)

logterm id = The value of the "first" logical terminal id in
the list of current logical terminal id's
maintained by the logical terminal services
modu 1 e .

GET-NEXT-LOGICAL-TERMINAL-ID (;return, loqterm id)

return = One of the following:
logical terminal id returned

no more logical terminal id's

logterm id = The value of the "next" logical terminal id in the
list of current logical terminal id's maintained
by the logical terminal services module.

READ-CHAR (loqterm id; return, character)

return = One of the following:

success - character returned

failure - no character returned

failure - line break

failure - framing error

failure - parity error

failure - receiver overrun

The character returned on success is removed from the logical
terminal input queue. If the logical terminal services module
detects an error when attempting to input from the underlying
physical terminal, it queues the error on the logical terminal
input queue (sequentially with respect to input data). The last
four failure returns result from the removal of such an error
indication from the input queue. If more that one error was
detected simultaneously by the logical terminal services module,
it only indicates a single error via this function. The error
precedence is the same as in the failure list above (i.e., line
break takes precedence over framing error, framing error takes
precedence over parity error, and parity error takes precedence
over receiver overrun). Line break, framing error, parity error,
and receiver overrun all queue the character on which the error
occurred as well as the error (this character may be required by
some mode modules, e.g., CTERM).

WRITE-CHAR (logterm id, transparency, character; return, h-position,
v-position)

transparency = A Boolean value indicating whether or not the
character should have an effect on horizontal and
vertical position. One of the following:

TRUE means HT, VT, and FF are not expanded,
wrapping is not done, and the h-position and
v-position values are returned as zero.

FALSE means HT, VT, and FF are expanded, wrapping
is done, and horizontal and vertical position are
mode 1 ed .

return = One of the following:

success

failure - insufficient resources

h-position = T h e horizontal position after writing the
character. A value in the range <0, Line-width -
1>.

v-position = The vertical position after writing the character.
A value in the range <Or Page-length - 1>.

A success return indicates that the character has been placed on
the logical terminal output queue. Horizontal and vertical
positions are discussed in Sections 3.1.5 through 3.1.5.3.

READ-CHARACTERISTIC (type,logterm id, selector; value)

type = The type of characteristic to be read. One of the
following:

"physical"

"logical"

loqterm id = A logical terminal id.

selector = A value indicating which characteristic to read.

value = The value of the selected characteristic.

WRITE-CHARACTERISTIC (type, loqterm id, selector, value; return)

type = The type of characteristic to be written. One of
the following:

"physical"

"logical"

logterm id = A logical terminal id.

selector = A value indicating which characteristic to write.

value = The value of the selected characteristic.

return = One of the following:

success

failure - function disabled

failure - invalid value

This function may be used to write any physical terminal
characteristic and any logical terminal characteristic except
Mode-writing-allowed. This function fails for logical terminal
characteristics if ode-writing-allowed is false.

A terminal characteristic written via this function is used
temporarily. Once the logical terminal binding has been broken,
the terminal characteristics revert to those most recently
established via the terminal management interface (discussed
below).

DISABLE-MANAGEMENT-SWITCHOVER (loqterm id; return)

return = One of the following:

success

failure - function disabled

This function disables the ability of the human terminal user to
switch the associated physical terminal into terminal management
mode. Its purpose is to allow transparent, binary input from a
device (e.g., a cassette reader) connected to the server system
via a physical terminal interface. The failure return indicates
that the user has set the Management-guaranteed physical terminal
characteristic TRUE.

ENABLE-MANAGEMENT-SWITCHOVER (loqterm id)

This function reenables the terminal user to enter terminal
management mode after a previous DISABLE-MANAGEMENT-SWITCHOVER
function.

RESET-PAGE-STOP-POSITION (logterm id)

This function resets the "page-stop-position" variable (described
in Section 3.1.5.3 on "Position Modeling") to zero. This
function provides a facility whereby the mode module can control
output stopping due to the page-stop-position variable reaching
the Stop-length limit; in particular, it will allow the mode
module to differentiate between output from the host and output
due to local echoing of input. (For use with the CTERM mode
module, it is intended that CTERM resets the page-stop-position
variable on Reads after the prompt from the Start Read message
has been echoed -- this will produce the same visual effect as
seen on local terminals using page stop.)

NOTE

This function produces a race condition in the
TSA Model as characters for output by the
foundation service are queued to the foundation
layer and there is no means of synchronizing the
reset page-stop-position function and the prompt
characters in the queue. However, this is a
problem peculiar to the Model, and
implementations should be able to solve it
easily.

3.1.3 Terminal Management Interface - The interface used by the
terminal management module contains the following functions:

1. read the maximum physical terminal id

2. read a character

3. write a character

4. read a terminal characteristic

5. write a terminal characteristic

6. define a logical terminal's name

7. free flow control

8. read the physical terminal connection state

9. hang up the physical terminal connection

10. disable the answering of a physical terminal connection

11. enable the answering of a physical terminal connection

12. read counter

13. clear counters

GET-MAX-PHYSICAL-TERMINAL-ID (; max id)

max id = The maximum value of a physical terminal id.

READ-MANAGEMENT-CHAR (physical terminal id, character; return)

return = One of the following:

success - character returned
failure - no character returned
failure - line break
failure - framing error
failure - parity error
failure - receiver overrun

The character returned on success is removed from the management
input queue. If the logical terminal services module detects an
error when attempting to input from the underlying physical
terminal, it queues the error on the management input queue
(sequentially with respect to input data). The last four failure
returns result from the removal of such an error indication from
the input queue. I f more than one error was detected
simultaneously by the logical terminal services module, it only
indicates a single error via this function. The error precedence
is the same as in the failure list above (i.e., line break takes
precedence over framing error, framing error takes precedence
over parity error, and parity error takes precedence over
receiver overrun). Line break, framing error, parity error, and
receiver overrun all queue the character on which the error
occurred as well as the error (this character may be required by
some mode modules, e.g., CTERM).

WRITE-CHAR (physical terminal id, character; return)

return = One of the following:

success

failure - insufficient resources

A success return indicates that the character has been placed on
the physical terminal output queue.

READ-CHARACTERISTIC (type, terminal id, selector; value)

type = The type of characteristic to be read. One of the
following:

"physical"

" logical"

terminal id = Either a physical terminal id or a logical
terminal id, as selected by "type".

selector = A value indicating which characteristic to read.

value = The value of the selected characteristic.

WRITE-CHARACTERISTIC (type, terminal id, selector, value; return)

type = The type of characteristic to be written. One of
the following:

"physical"
"logical"

terminal id = Either a physical terminal id or a logical
terminal id, as selected by "type".

selector = A value indicating which characteristic to write.

value = The value of the selected characteristic.

return = One of the following:

success
failure - invalid value

DEFINE-NAME (logterm id, name)

name = A string of characters that defines the logical
terminal's name, used in binding functions
described in Section 3.2.3 (the maximum name
length is implementation-specific but is in the
range 6-40, inclusive).

FREE-FLOW-CONTROL (physical terminal id)

This function frees the output flow control state. It has the
same effect as the entry of an XON from the physical terminal.

READ-PHYSICAL-CONNECTION-STATE (logterm id; state)

state = The state of the connection to the physical
terminal. One of the following:

DON'T-ANSWER
DISCONNECTED-Idle
DISCONNECTED-Timeout
CONNECTING
CONNECTED-Active
CONNECTED-Sync-Wait
CONNECTED-CD-Wait
CONNECTED-CTS-Wait

These states are further discussed in Section 3.1.3.1, Physical
Connection States.

HANG-UP (physical terminal id)

This function causes the physical terminal connection to be
disconnected (i.e., it "hangs upn the connection). The state
becomes DISCONNECTED-Timeout. A new connection can be made after
the timeout and the state goes to DISCONNECTED-Idle.

DISABLE (physical terminal id)

This function causes the physical terminal connection to be
disconnected (i.e., it "hangs up" the connection) and inhibits
the reconnection of the physical terminal. The state becomes
DON'T-ANSWER.

ENABLE (physical terminal id)

This function allows a new physical terminal connection to be
made. The state becomes DISCONNECTED-Idle if it was
DON'T-ANSWER. This function is ignored if the state is not
DON'T-ANSWER.

READ-COUNTER (physical terminal id, selector; counter)

selector = The counter selector. Counters are described
above with characteristics.

counter = The returned counter value.

CLEAR-COUNTERS (physical terminal id)

This functions clears all counters associated with the physical
terminal.

3.1.3.1 Physical Connection States - The "physical terminal" referred
to above may really be hardware that is capable of communicating with
a physical terminal and also capable of switching (i.e., "answering'
and "hanging upn). The Modem-present characteristic is true for these
physical terminals. The physical connection is modeled as having a
state that can be read via the READ-PHYSICAL-CONNECTION-STATE
function.

The operation of this type of connection is modeled on the standard
procedures for the handling of modem signals and how connections are
established and broken. This section deals with the handling of a
connection once it has been established, in particular, establishing
synchronization between the two DTE's using the connection (e.g.,
auto-baud) and the temporary loss of the "carriern (CD) and
"clear-to-send" (CTS) signals (standard definitions and abbreviations
of modem signals are used in this section).

This section presents a state machine which

o Reflects the states and state transitions involved in
establishing and breaking a physical connection. (The
purpose of these states is to allow terminal management to
observe the state of the connection.

o Describes the operation of the physical connection once the
connection has been established.

When the physical terminal is connected to the server by a
non-switched connection, the only transitions will be between
CONNECTED-Active and CONNECTED-Sync-Wait (the modem signals DSR, CTS,
and CD are assumed to always be true).

The CONNECTED-Sync-Wait state described below exists for establishing
synchronization between the physical terminal and Foundation processes
communicating with the terminal over the physical connection.
Synchronization will include auto-baud (when the Auto-baud-detect
characteristic is true), determining terminal type, and other
activities necessary for the correct operation of the terminal over
the physical connection.

The other states described below are related to modem operation.

There are four major states and some minor states for the CONNECTED
and DISCONNECTED major states. The major state names are in all
capital letters and the minor state names are lowercase except for the
first letter of each word.

The physical connection states are described in Table 3-4.

Table 3-4 Physical Connection States

State

DON'T-ANSWER There is no connected physical terminal. A call
will not be answered. ("Data terminal ready" is not
true in this state.)

DISCONNECTED- There is no connected physical terminal. A call
Idle will be answered. ("Data terminal ready" is true.)

DISCONNECTED- A period of time during which DTR is held off to
T imeout ensure the connection is properly broken.

CONNECTING A timeout initiated after DSR goes true before
entering the CONNECTED state.

(continued on next page)

Table 3-4 (Cont.) physical Connection States

Meaning

State

The physical terminal is ready for data transfer
i n this state, a "clear to send" signal received by
the server system and a "request to send" signal
asserted by the server system are handled in an
implementation-dependent manner.)

CONNECTED-
Active

A connection has been established but synchronizat-
ion not yet established. All input characters are
discarded.

CONNECTED-
Sync-Wa i t

A connection has been established, but "carrier"
(CD) was temporarily lost. The connection will be
broken if CD does not reappear within two seconds.
All input characters are discarded.

CONNECTED-
CD-Wa i t

CONNECTED-
CTS-Wa i t

A connection has been established, but CTS was
temporarily lost. The connection will be broken if
CTS does not reappear within two seconds.

Table 3-5 summarizes the reasons for the transitions among these
states.

Table 3-5 Physical Connection State Transition Reasons

Old
State

DISCONNECTED-
Idle

CONNECTING

New
State

Transition
Reason

The signal DSR is detected.
Timeouts are started.

CONNECTING

The timeout started in the CONNECTING
state expired before CD was detected.

DISCONNECTED-
T imeout

A "carrier" signal was detected, and
the Auto-baud-detect characteristic is
true.

CONNECTING CONNECTED-
Sync-Wai t

CONNECTING A "carrier" signal was detected, and
the Auto-baud-detect characteristic is
false.

CONNECTED-
Active

CONNECTED-
Active

CONNECTED-
CD-Wa i t

CONNECTED-
CD-Wa i t

The "carrier" signal was lost.
(A two-second timeout is started.)

CONNECTED-
CD-Wa i t

CONNECTED-
Active

"Carrier" returned before the timeout
expired.

DISCONNECTED-
Timeout

Timeout expired.

continued on next page)

Table 3-5 (Cont.) Physical Connection State Transition Reasons

Old
State

New
State

Transition
Reason

Synchronization was lost (e.q., eight
consecutive characters were received
with a framing error and the
Auto-baud-detect characteristic is
true).

CONNECTED-
Active

CONNECTED-
Sync-Wai t

The server has ascertained the baud
rate.

CONNECTED-
Sync-Wai t

CONNECTED-
Active

CONNECTED-
Sync-Wai t

DISCONNECTED-
Timeout

Fatal synchronization failure.

CONNECTED-
Active

The CTS signal was lost. (A two-
second timeout is started.)

CONNECTED-
CTS-Wai t

CONNECTED-
CTS-Wa i t

CONNECTED-
Active

CTS returned before the timeout
expired.

CONNECTED-
CTS-Wa i t

DISCONNECTED-
Timeout

Timeout expired.

DISCONNECTED-
Timeout

DISCONNECTED-
Idle

Timeout expired.

DISCONNECTED-
T imeout

The HANG function was executed at the
terminal management interface, or the
"data set ready" signal was lost.

The DISABLE function was executed at the
terminal management interface.

DON'T-ANSWER any

DON'T-ANSWER The ENABLE function was executed at
the terminal management interface.

DISCONNECTED-
Idle

3.1.4 physical ~erminal Interface - The physical terminal interface
exists between the server system and the physical terminal. (It is
essentially the interface to a UART including modem control signals.)

This interface contains the following functions:

1. read a character from an entry device

2. write a character to a presentation device

3. set the character bit width

4. enable/disable parity

5. set parity type, if enabled

6. set input speed

7. set output speed

8. sense modem signals

9. set modem signals

READ-TERMINAL-CHAR (physical terminal id; return, character)

return = One of the following:

success - character returned
failure - no character returned
failure - line break
failure - framing error
failure - parity error
failure - receiver overrun

An implementation of this specification may not distinguish some
of these failures (e.g., "line break" may not be distinguished
from "framing error"). Also, in the case where multiple errors
could be observed simultaneously, this interface returns only a
single error. The error precedence is as defined by the order
given above except where a framing error is detected and a
character is also received whose bits are not all zero -- this is
to be interpreted as a "framing error" and not as a "line break".

NOTE

Some hardware doesn't specifically differentiate
between "line break" and "framing error". Both
are received as a "framing error" and the
character received with the error condition is
used to differentiate a "line break" (the line
purposely being held in the SPACE state for
greater than one character time) from a "framing
error" (a received character whose stop bit was
SPACE rather than MARK). Where this is the
case, the character received with a "line break"
will be null (all zeros) and the character
received with a "framing error" will be
non-null .

WRITE-TERMINAL-CHAR (physical terminal id, character; return)

return = One of the following:

success - character accepted for output
failure - insufficient resources to queue another
character

SET-CHAR-WIDTH (physical terminal id, char-width)

char-width = 5, 6, 7, or 8.

ENABLE-PARITY (physical terminal id)

DISABLE-PARITY (physical terminal id)

SET-PARITY-TYPE (physical terminal id, parity-type)

parity-type = One of the following:

CLEAR (force parity bit 0)

EVEN

ODD

SET (force parity bit 1)

If parity is enabled, the parity-type specified by this function
is used for parity checking and generation in the physical
terminal (where these operations are supported by the physical
terminal).

SET-INPUT-SPEED (physical terminal id, input-speed)

input-speed = The bit/second input speed. A 16-bit value.

SET-OUTPUT-SPEED (physical terminal id, output-speed)

output-speed = The bit/second output speed. A 16-bit value.

SENSE-MODEM (physical terminal id; data-set-ready, ring, carrier,
clear-to-send)

Each of these signals is returned as a Boolean value. The names
are intended to convey the meaning of the signal as defined by
EIA standard RS-232-C. The underlying hardware interface may be
other than RS-232-C.

SET-MODEM (physical terminal id, data-terminal-ready, request-to-send)

The number of stop bits associated with the terminal is
calculated by the following algorithm. If the output speed is
less that 300 bits/second, the number of stop bits is set to two.
Otherwise, the number of stop bits is set to one.

3.1.5 Internal Operation - The logical terminal services module
contains internal algorithms to enter and exit terminal management
mode and to perform the processing implied by several of the logical
terminal characteristics. A general description of this operation
follows.

3.1.5.1 Loss Notification - If Loss-notification is TRUE and an
attempt to place a character on either the logical terminal input
queue or the management input queue fails because there is no room in
the destination queue, then the Loss-notification-character is placed
on the physical terminal output queue, if there is room on the output
queue.

3.1.5.2 Mode Switching - Each physical terminal is in one of two
modes: (1) normal mode or (2) terminal management mode. In the
future, the terminal user may be able to switch from one mode to the
other by using special keys (such as the VT100 SETUP key) that are not
accessible to application programs. For the present, the terminal
user switches from either of these modes to the other by entering
Switch-character-1 followed by Switch-character-2 (see terminal
characteristics, Section 3.1.1 and Appendix A.2).

To allow the user to pass this sequence of characters through without
switching modes, the logical terminal services module converts two
consecutive Switch-character-1's to a single Switch-character-1 and
passes it through without switching modes. A Switch-character-1
followed by any character other than a Switch-character-2 are both
passed through unmodified, without switching modes.

While a terminal is in terminal management mode, input characters are
removed from the physical terminal input queue and placed on the
terminal management input queue; characters written via the terminal
management WRITE-CHAR function are placed on the output queue.

While a terminal is in normal mode, input characters are removed from
the physical terminal input queue and placed on the logical terminal
input queue (with the exceptions described below). Characters written
via the normal mode access WRITE-CHAR function are placed on the
output queue.

All output characters are subject to flow control and character
expansion, as described below.

3.1.5.3 Position Modeling, Character Expansion and Wrapping - The
logical terminal services module attempts to model the horizontal and
vertical active position of the terminal for several reasons. It
requires these values to expand form feeds and tabs and to do
character wrapping. It also requires these values to provide the
normal mode access WRITE-CHAR function.

The logical terminal services module maintains three state variables
for each logical terminal: (1) "horizontal position", (2) "vertical
position", and (3) "page stop position". The initial value of all
these variables is 0. The variables are initialized whenever a new
binding is formed and whenever a new mode is entered for the logical
terminal. "Horizontal position" takes on values in the range 0 to
Line-width minus 1. "Vertical position" and "page stop position" take
on values in the range 0 to Page-length minus 1, and 0 to Stop-length
minus 1, respectively.

In addition, the logical terminal services module is capable of
expanding the HT, VT, and FF characters or attempting to track their
position, assuming the physical terminal hardware is expanding them.
This capability is selected via characteristics.

Each character placed on the output queue is examined to determine how
these variables should be changed and what character expansions, if
any, should be performed. This operation is summarized below. Unless
noted otherwise, the page stop position is changed in the same way as
the vertical position. (Character wrapping, which may affect
horizontal and vertical position is also discussed.,)

A backspace decrements the horizontal position by
1. If the horizontal position is 0, it remains
at zero.

A horizontal tab is expanded to enough spaces to
bring the horizontal position to the next
multiple of 8. If the horizontal position
becomes equal to <Line-width - 1> in this
process, the expansion stops. (If wrapping is
enabled, this last character causes a wrap.)

A line feed increments the vertical position by 1
(mod Page-length).

A vertical tab is expanded either to a form feed
(described below) or to enough line feeds to
bring the vertical position to the next multiple
of 11 (mod page-length). The page stop position
is incremented by 1 for each increment in the
vertical position.

A form feed is expanded to enough line feeds to
bring the vertical position to 0 (mod
page-length). The page stop position is
incremented by 1 for each increment in the
vertical position.

A carriage return sets the horizontal position to
0.

Printing characters These characters increment the horizontal
position by 1 to a maximum value of <Line-width -
1>. (Wrapping may occur at this point.)

Other characters These characters have no effect on the horizontal
or vertical position.

I f character wrapping is selected (via a characteristic), the
following additional operation takes place. Each time the horizontal
position is incremented, it is compared to Line-width. If they are
equal, the horizontal and vertical positions are updated to reflect
the insertion of a <carriage return, line feed> in the output
preceding the character in question. If so requested by the Wrap
characteristic, the logical terminal services module inserts these
characters; otherwise, it assumes that the hardware has inserted the
characters.

3.1.5.4 Output Flow Control - Output flow control is the control over
output from the server to the physical terminal. It may operate at
two levels: (1) as an "on/offW control and (2) as a "paqe stop"
control. The former is selected by the Output-flow-control
characteristic; the latter is selected by the Output-page-stop
characteristic.

"On/off" flow control means that when the server receives an XOFF
character from the terminal, it stops transmitting. When it receives
an XON character, it starts transmitting again. Note that, for this
function to provide a reasonable service as seen by the terminal user,
the physical terminal output queue must be short and the logical
terminal services module must have sufficient processing bandwidth.
This processing is performed according to Digital's standard for
defining the XOFF operation.

"Page stop" control means that the server stops output every time it
has incremented the "page stop position" (discussed above) by the
value of Stop-length. When it receives an XON character, it starts
transmitting again. The "page position" variable, described above, is
not set to 0 when the vertical position is set to 0. It is set to 0
only when transmission restarts.

If both flow control procedures are in effect at the same time, they
are considered to be layered, with the "on/off" control below the
"paqe stop" control. This means that if an XON is received, the lower
state is first examined to see if transmission should restart. If the
lower state is stopped, it is reenabled. (Transmission will not
start, however, if the upper level is stopped.) If the lower state is
enabled, then the XON is passed to the upper state and handled there.
If that state is stopped, it is restarted. If that state is enabled,
the XON is ignored.

The value of the page-stop-position variable can be reset to 0 by the
mode module using the Reset Paqe-stop-position function, thus altering
the point at which output will stop due to the page-stop-position
variable reaching the Page-length limit. This function is used to
differentiate between output from the host and input characters being
echoed locally.

3.1.5.5 Input Flow Control - Input flow control is the control over
input from the physical terminal to the server. It is controlled
completely by an operation analogous to "on/off" output flow control,
as described in Section 3.1.5.4. This operation is selected by a
characteristic.

If either input queue crosses a threshold while a character is being
added to it, and an XOFF character has not been sent to the terminal
since the Last XON was sent (as part of this algorithm), then an XOFF
is placed on the physical terminal output queue. If either input
queue crosses a threshold (not the same threshold described in the
preceding paragraph) while a character is being removed from it, and
an XON has not been sent to the terminal since the last XOFF was sent
(as part of this algorithm), then an XON is placed on the physical
terminal output queue.

3.2 Terminal Communication Services

The primary functions of the terminal communication services modules
are to bind logical terminals to host portals, to synchronize the
sharing of a binding among multiple pairs of mode access modules, and
to carry mode access protocol messages between a host system and a
server system.

3.2.1 Logical Terminals and Portals - A logical terminal has already
been defined. For the purposes of the following connection management
functional description, a logical terminal is an addressable
collection of resources existing in a server system.

Similarly, a portal is an addressable collection of resources existing
in a host system. The connection management functions allow a logical
terminal and a portal to become logically connected. When this
occurs, the portal and logical terminal are referred to as being
bound, and the connection is referred to as a binding. When a logical
terminal is bound to a portal, a mode access module in the host system
may communicate with its counterpart in the server system via the
binding.

This specification models logical terminals and portals as static
resources; they are neither created nor destroyed by action of any of
the modules described below. A future version of this specification
may describe the dynamic creation and destruction of either or both.

3.2.2 Version 1.0 Compatibility - This version of this specification
is compatible with the "DECnet Network Virtual Terminal
Specification", Version 1.0. This compatibility is reflected in the
interface described below. In particular, a logical terminal may
become bound to a Version 1.0 portal, and a portal may become bound to
a Version 1.0 logical terminal. Mode access modules detect this by
examining the binding state of the logical terminal or portal. This
state is BOUND when each of the parties is a Version 2.0 (or later)
party; this state is BOUND-1 when one of the parties is a Version 1.0
party.

A logical terminal or portal in the BOUND-1 state has no associated
mode state and is not affected by the mode management interface
functions. It is assumed that a higher level module can properly
manage such a logical terminal or portal.

3.2.3 Host System Connection Management Functions - The terminal
communication services module in the host system provides the
following connection management functions to higher level modules in
the host :

1. read the set of portal id's

2. register a mode access module

3. read the portal binding state

4. bind to a terminal by name

5. bind to a communicating terminal

6. disconnect (unbind) a binding

7. close a binding

This specification does not attempt to define all the modules that
might use the interface functions described below. The following
information describes a typical binding scenario.

The terminal management module in a remote server system initiates a
virtual circuit for the purpose of forming a binding. A login process
in the host system to which the virtual circuit was directed scans the
portals looking for one that has been associated with a newly-formed
virtual circuit. he description of portal binding states, a few
paragraphs below, tells how this information is available.) The login
process causes the portal to become bound by issuing a request to the
terminal communication services module. Once the binding has been
formed, the login process can prompt the user for login information by
associating the portal with terminal service requests.

Alternatively, when a server system is initialized, some or all
logical terminals may be configured to be bound to a particular
application in a particular host in a particular mode. In this case,
a module in the server system (unspecified here) and a module in the
host system (also unspecified here) would form a binding, after which
the host module would start the application and place the binding in
the necessary mode.

Most of the functions described below are intuitively required to bind
and unbind portals and logical terminals. The REGISTER-MODE function
exists for the following reason.

It is assumed that a given binding may sequentially operate in several
modes during its lifetime. This would be the case if for example; a
binding was first placed in command mode for logging in; the user ran
an application that placed the binding in forms mode; and then the
host system placed the binding back in command mode when the
application finished. This operational model assumes that a mode
access module (in either the host or server system) may maintain
active state information for a binding even when the binding is
operating in a different mode.

The REGISTER-MODE and UNBIND functions with the connection management
state machine ensure that all mode access modules participate in the
process of unbinding a portal. This, in turn, allows a mode access
module to properly initialize any state variables associated with a
given portal, even if the module is not currently active on the
portal.

The following two functions allow a mode access module to obtain the
active set of portal id's. They are modeled for reasons similar to
those for GET-FIRST-LOGICAL-TERMINAL-ID and
GET-NEXT-LOGICAL-TERMINAL-ID, described in Section 3.1.2, Normal Mode
Access Interface.

portal id = The value of the "first" portal id in the list of
current portal id's maintained by the terminal
communication services module.

GET-NEXT-PORTAL-ID (;return, portal id)

return = One of the following:

portal id returned

no more portal id's

portal id = The value of the "next" portal id in the list of
current portal id's maintained by the terminal
communication services module.

REGISTER-MODE (mode id; return)

mode id = A mode access identifier (see Mode Management).

return = One of the following:

success - user registered

failure - insufficient resources

This function is normally executed only once by each mode access
module at system initialization. Each mode access module
registered via this function must participate in the unbinding of
a portal. See the connection management state description below.

READ-PORTAL-BINDING-STATE (portal id; state, source, name,
logical terminal id, reason)

state = One of the following:

UNBOUND
REBIND-WAIT
REQUESTING
ALLOCATED
BOUND
BOUND- 1
UNB I ND I NG

source = The node name of the server system attempting to
form a binding (returned only if state =
ALLOCATED)

name = The name (defined by the DEFINE-NAME function
described in Section 3.1.3) of the logical
terminal attempting to form a binding. Returned
only if state = ALLOCATED)

logterm id = The logical terminal id of the bound logical
terminal (returned only if state is BOUND)

reason = Reason for entering UNBOUND state. One of the
following:

no reason

no communication (returned only if UNBOUND state
entered from REQUESTING state)

requested terminal in use (returned only if
UNBOUND state entered from REQUESTING state)

no resources (returned only if UNBOUND state
entered from REQUESTING state)

requested terminal does not exist (returned only
if UNBOUND state entered from REQUESTING state)

destination system not a server (returned only if
UNBOUND state entered from REQUESTING state)

BIND-NAME (portal id, destination, name)

destination = The node name of the server system to which the
binding should be directed.

name = The name (defined by the DEFINE-NAME function
described in Section 3.1.3) of the logical
terminal to which the binding is requested.

This function binds to a terminal by name. It is valid only if
the portal is in the UNBOUND state.

BIND (portal id)

This function binds to a logical terminal which has communicated
with the host for the purpose of forming a binding. It is valid
only if the portal is in the ALLOCATED state.

UNBIND (portal id, mode id)

Each registered mode access module must issue this function for a
portal to unbind. This function is valid only if the portal is
in the REQUESTING, IN-USE, BOUND, BOUND-1, or UNBINDING state.

CLOSE (portal id)

This function requests the immediate change of the portal to the
UNBOUND state.

Table 3-6 defines the meanings of the binding states of a portal.

Table 3-6 Portal Binding States

UNBOUND There is no connected logical terminal.

REQUESTING The host system BIND or BIND-NAME function was
requested; the portal is attempting to bind to the
specified logical terminal.

ALLOCATED A logical terminal is attempting to bind to this host
via this portal (i.e., an incoming binding is in
progress).

BOUND A Version 2.0 logical terminal is connected to this
portal.

BOUND- 1 A Version 1.0 logical terminal is connected to this
portal.

UNBINDING The portal is attempting to make a transition to the
UNBOUND state, but not all host system mode access
modules have requested the UNBIND function.

Table 3-7 describes the reasons for the transitions among these
states.

Table 3-7 Reasons for Portal Binding State Transitions

Old New Transition
State State Reason
----- ----- ----------

UNBOUND REQUESTING The host system BIND-NAME function was
requested.

UNBOUND ALLOCATED The server system BIND function was
requested at some point in the past.

REQUESTING UNBOUND One of the following:

The destination system was not a server.

The destination system had insufficient
resources.

The specified logical terminal did not
exist.

The specified logical terminal was
already bound to a different portal.

(continued on next page)

Table 3-7 (Cont.): Reasons for Portal Binding State Transitions

Old
State

REQUESTING

REQUESTING

ALLOCATED

BOUND

BOUND- 1

UNBINDING

any

New
State

BOUND

BOUND- 1

REQUESTING

UNBINDING

UNBIND I NG

UNBOUND

UNBOUND

Transition
Reason

The binding has been formed and the
logical terminal is a Version 2.0
logical terminal.

The binding has been formed and the
logical terminal is a Version 1.0
logical terminal.

The host system BIND function was
requested.

One of the following:

The UNBIND function was requested at
least once in the host system.

The server system has failed.

The underlying communication facilities
have failed.

The associated physical terminal has
disconnected from the terminal system.

One of the following:

The UNBIND function was requested at
least once in the host system.

The server system has failed.

The underlying communication facilities
have failed.

The associated physical terminal has
disconnected from the terminal system.

The host system UNBIND function was
requested by the last registered mode
access module.

The host system CLOSE function was
requested.

3.2.4 Server System Connection Management Functions - The terminal
communication services module in the server system provides the
following connection management functions for higher level modules in
the system:

1. register a mode access module

2. read the logical terminal binding state

3. bind to a host by name

4. disconnect (unbind) a binding

5. close a binding

REGISTER-MODE (mode id; return)

mode id = A mode access identifier (see Mode ~anaqement).

return = One of the following:

success - user registered

failure - insufficient resources

This function is identical to its counterpart in a host system.
In addition, it allows the server system to know when a mode
change has been requested to a nonexistent mode (as described in
Section 4.2.4, Server System).

READ-LOGICAL-TERMINAL-BINDING-STATE (logterm id; state, portal id,
reason)

state = One of the following:

DISCONNECTED

UNBOUND

REQUESTING

BOUND

BOUND- 1

UNB I ND I NG

portal id = The portal id of the bound portal (returned only
if state is BOUND or BOUND-1).

reason = Reason for entering UNBOUND state. One of the
following:

no reason

no communication (returned only if UNBOUND state
entered from REQUESTING state)

no resources (returned only if UNBOUND state
entered from REQUESTING state)

requested portal in use (returned only if UNBOUND
state entered from REQUESTING state)

requested portal does not exist (returned only if
UNBOUND state entered from REQUESTING state)

destination system not a host (returned only if
UNBOUND state entered from REQUESTING state)

protocol error

BIND (logterm id, destination)

destination = The node name of the host system to which the
binding should be directed.

This function is valid only if the logical terminal is in the
UNBOUND state.

UNBIND (logterm id)

Each registered mode access module must issue this function for a
logical terminal to unbind. This function is valid only if the
logical terminal is in the REQUESTING, BOUND, BOUND-1, or
UNBINDING state.

CLOSE (logterm id)

This function requests the immediate change of the logical
terminal to the UNBOUND state.

Table 3-8 defines the meanings of the binding states of a logical
terminal.

Table 3-8 Logical Terminal Binding States

State Mean i ng
----- - - - - - - -

DISCONNECTED There is no connected physical terminal associated
with the logical terminal.

UNBOUND There is no connected portal.

REQUESTING The server system BIND function was requested; the
logical terminal is attempting to bind to a host.

BOUND A Version 2.0 portal is connected to this logical
terminal.

BOUND- 1 A Version 1.0 portal is connected to this logical
terminal.

UNBINDING The logical terminal is attempting to make a
transition to the UNBOUND state, but not all server
system mode access modules have requested the UNBIND
function.

Table 3-9 describes the reasons for the transitions among these
states.

Table 3-9 Reasons for Terminal Binding State Transitions

Old
State

DISCONNECTED

UNBOUND

UNBOUND

UNBOUND

REQUESTING

New
State

UNBOUND

DISCONNECTED

REQUESTING

BOUND

DISCONNECTED

Transition
Reason

A physical terminal has become
connected to the server system and
associated with the logical terminal
(the physical connection state is
CONNECTED).

The associated physical terminal has
disconnected from the server system
(the physical connection state has
left CONNECTED).

The server system BIND function was
requested.

A host B I ND-NAME function,
specifying the corresponding logical
terminal was requested at some point
in the past.

The associated physical terminal has
disconnected from the server system
(the physical connection state has
left CONNECTED).

(continued on next page)

Table 3-9 (Cont.): Reasons for Terminal Binding State Transitions

Old
State

New
State

Transition
Reason

REQUESTING UNBOUND One of the following:

The destination system was not a
host.

The destination system had
insufficient resources.

The specified portal did not exist.

The specified portal was already
bound to a different logical
terminal.

REQUESTING

REQUESTING

BOUND

BOUND- 1

BOUND

BOUND- 1

UNBINDING

UNB I ND I NG

The host system BIND function was
requested at some point in the past
and the portal was a Version 2.0
portal.

The host system BIND function was
requested at some point in the past
and the portal was a Version 1.0
portal.

One of the following:

The UNBIND function was requested at
least once in the terminal system.

The host system has failed.

The underlying communication
facilities have failed.

The associated physical terminal has
disconnected from the terminal
system.

One of the following:

The UNBIND function was requested at
least once in the terminal system.

The host system has failed.

The underlying communication
facilities have failed.

continued on next page)

Table 3-9 (Cont.): Reasons for Terminal Binding State Transitions

0 ld
State -----

UNB I ND I NG

UNBIND I NG

New
State

DISCONNECTED

UNBOUND

UNBOUND

Transition
Reason

The associated physical terminal has
disconnected from the terminal
system.

The server system UNBIND function
was requested by the last registered
mode access module and the
associated physical terminal has
disconnected from the server system.

The server system UNBIND function
was requested by the last registered
mode access module.

The server system CLOSE function was
requested.

3.2.5 Host System Mode Management Functions - The primary requirement
of mode management functions (in both the host system and the server
system) is to allow the orderly handing off of a binding from one pair
of mode access modules to a second pair of mode access modules. This
specification assumes that a mode change request is generally
initiated in the host system by a mode access module. This is
consistent with a model in which all terminal interactions are the
result of explicit requests by a host module to send data, receive
data, change control variables, etc. The exception to this occurs
when a mode access module in a server system detects a protocol error
in its protocol operation. In this case, a request to leave the
current mode (or, equivalently, to enter no mode) may be made by such
a mode access module (as described under Server System Mode Management
Functions).

The host system interface to its terminal communication services
module provides the following mode management functions:

1. enter a new mode

2. exit the current mode

3. confirm the remotely requested exit of the current mode

4. read the current mode state

ENTER-MODE (portal id, mode id)

This function requests either the entry of a mode when the portal
was in the IN-NO-MODE state (which is the case just after a
binding is formed) or the changing of modes from one mode to
another (when the portal is in the IN-A-MODE state).

EXIT-MODE (portal id)

This function requests that the portal be taken out of any mode.
It returns the portal to its state after the binding was
initially formed. This function is valid only if the portal is
in the IN-A-MODE state.

CONFIRM-EXIT (portal id)

This function confirms the exit of the old mode when the server
system mode access module has requested such an exit.

READ-PORTAL-MODE-STATE (portal id; state, mode id, reason)

state = One of the following:

IN-NO-MODE

IN-A-MODE

mode id = The mode that has been requested of the server
system (if state = ENTERING) or the mode that the
portal is in (if state = IN-A-MODE) or the mode
that the portal was in (if state = EXITING).

reason = The reason the state was entered (for some
states). One of the following:

host EXIT-MODE function executed (returned in the
IN-NO-MODE state)

requested mode doesn't exist (returned in the
IN-NO-MODE state)

server EXIT-MODE function executed (returned in
the IN-NO-MODE and EXITING states)

Table 3-10 defines the meanings of the mode states of a portal.

Table 3-10 Host Portal Mode States

IN-NO-MODE There is no pair of mode access modules using the
binding associated with the portal.

EXITING The terminal mode access module that was using the
asociated binding requested the EXIT-MODE function at
some point in the past.

I N-A-MODE A pair of mode access users is using the associated
binding.

ENTER I NG The host system ENTER-MODE function was requested.

Table 3-11 describes the reasons for the transitions among these
states.

Table 3-11 Reasons for Portal Mode State Transitions

Old New Transition
State state Reason
----- ----- ----------

IN-NO-MODE ENTERING The host system ENTER-MODE function was
requested.

EXITING IN-NO-MODE The host system CONFIRM-EXIT function
was requested.

IN-A-MODE IN-NO-MODE The host system EXIT-MODE function was
requested.

IN-A-MODE EXITING The server system EXIT-MODE function was
requested at some point in the past.

IN-A-MODE ENTER I NG The host system ENTER-MODE function was
requested.

ENTER I NG IN-NO-MODE The mode that was requested was not
registered in the server system at the
time the mode change request was
processed there.

ENTER I NG I N-A-MODE The server system CONFIRM-ENTER-MODE
function was requested at some point in
the past.

3.2.6 Server System Mode Management Functions - The server system
interface to its terminal communication services module provides the
following mode management functions:

1. confirm a host request to enter a new mode

2. exit the current mode

3. confirm a host request to exit the current mode

4. read the current mode state

CONFIRM-ENTER-MODE (logterm id)

This function confirms the entry of a new mode. It is valid only
if the logical terminal is in the ENTERING state.

EXIT-MODE (loqterm id)

This function requests the exit of the current mode to no mode.
This function is provided to allow a mode access module to take
the binding out of any mode when it detects a protocol error in
its protocol. This function is valid only when the logical
terminal mode state is IN-A-MODE.

CONFIRM-EXIT-MODE (loqterm id)

This function confirms the exit of an old mode. It is valid only
if the logical terminal is in the CHANGING and EXITING states.

READ-LOGICAL-TERMINAL-MODE-STATE (logterm id; state, mode id, reason)

state = One of the following:

IN-NO-MODE

CHANGING

ENTER1 NG

IN-A-MODE

EXITING

mode id = The mode that has been requested of the logical
terminal (if state = ENTERING), the mode that the
logical terminal is in (if state = IN-A-MODE), or
the mode that should exit (if state = either
CHANGING or EXITING).

reason = The reason the state was entered (for some
states). One of the following:

server EXIT-MODE function executed (returned in
the IN-NO-MODE state)

host EXIT-MODE function executed (returned in the
IN-NO-MODE and EXITING states)

Table 3-12 defines the meanings of the mode states of a logical
terminal.

Table 3-12 Logical Terminal Mode States

IN-NO-MODE There is no pair of mode access modules using the
binding associated with the logical terminal.

CHANGING The host mode access module that was using the
associated binding requested the ENTER-MODE function at
some point in the past and the server CONFIRM-EXIT-MODE
function has not been executed.

ENTER1 NG The host mode access module that was using the
associated binding requested the ENTER-MODE function at
some point in the past and, if the logical terminal had
previously been in the IN-A-MODE state, the old mode
module has requested the CONFIRM-EXIT-MODE function.

IN- A-MODE A pair of mode access users is using the associated
binding.

EXITING The host EXIT-MODE function was executed at some point
in the past.

Table 3-13 describes the reasons for the transitions among these
states.

Table 3-13 Reasons for Terminal Mode State Transitions

Old
State

IN-NO-MODE

CHANGING

ENTER I NG

IN-A-MODE

I N-A-MODE

IN-A-MODE

EXITING

ENTERING

I N-A-MODE

IN-NO-MODE

CHANGING

EXITING

IN-NO-MODE

Transition
Reason

The host system ENTER-MODE function was
requested at some point in the past.

The server system CONFIRM-EXIT-MODE
function was requested.

The server system CONFIRM-ENTER-MODE
function was requested.

The server system EXIT-MODE function was
requested.

The host system ENTER-MODE function was
requested at some point in the past.

The host system EXIT-MODE function was
requested at some point in the past.

The server system CONFIRM-EXIT-MODE
function was requested.

3.2.7 Data Transfer Functions - If a host portal or a logical
terminal is in the BOUND connection management state, amodule layered
above foundation services may send data to and receive data from its
counterpart in the other system via the SEND-MESSAGE and
RECEIVE-MESSAGE functions. Two different messaqe types exist. COMMON
messages are for communication between mode-independent layered
modules (common terminal services), while MODE messages are for
mode-dependent modules. The portal or logical terminal must be in the
IN-A-MODE mode management state to send or receive MODE data.

o send a message

o receive a message

SEND-MESSAGE (message type, id, buffer; return)

message type = Either COMMON or MODE.

= Either a portal id or a logical terminal id
(depending on the system in which this function
exists).

buffer = A buffer containing a protocol message to
transmit.

return = One of the following:

success - message queued internally
transmission

for

failure - insufficient resources

RECEIVE-MESSAGE (message type, id, buffer; length, return)

message type = Either COMMON or MODE.

id = Either a portal id or a logical terminal id
(depending on the system in which this function
exists).

buffer

length

return

= An empty buffer to receive a protocol message.

= Length of received message in bytes if "return" is
success.

= One of the following:

success - message returned in buffer

failure - no message available

The synchronization between these functions, and the connection
management and mode management functions, is described below.

o Data between mode modules (not Common Terminal Service
modules) may only be sent and received on a binding when it
is in the BOUND connection management state and IN-A-MODE
mode management state. Data between Common Terminal Service
modules may be sent and received on a binding when its
connection management state is BOUND.

o An UNBIND function, ENTER-MODE function, or EXIT-MODE
function may be thought of as being delivered synchronously
with previously transmitted data. That is, if a module has
sent several protocol messages and then requests the UNBIND,
ENTER-MODE, or EXIT-MODE function, then all previously
transmitted protocol messages are received in the remote
system before the remote system perceives a transition of the
binding to the UNBINDING connection management state or
CHANGING or EXITING mode management states.

Data received in the host system following a transition to
the IN-A-MODE state are guaranteed to have been sent by the
corresponding mode access module after the binding made a
transition to the IN-A-MODE state in the server system.

o While a binding is either in a connection management state
other than BOUND or in a mode management state other than
IN-A-MODE, any received MODE type data that is internally
queued or received via the network is discarded by the
terminal communication services module. Similarly, COMMON
type data is discarded if the connection management state is
other than BOUND (the mode management state is not
significant for COMMON type data).

3.2.8 Virtual Circuit Services - The terminal communication services
modules require a virtual circuit service to communicate with each
other. The virtual circuit interface functions they require are
defined below.

CONNECT (node, object; return, port id)

node = The name of the node to connect to.

object = The identification of the module (in this case,
the terminal communication services module in the
host system) to connect to.

= One of the following: return

success - connection being requested

failure - insufficient resources

port id = An identification to be used for subsequent
references to the virtual circuit.

SENSE-CONNECT (object; return, node, port id)

object

return

node

port id

ACCEPT-CONNECT

REJECT-CONNECT

= The identification of the module (in this case,
the terminal communication services module in the
host system) that is requesting this function.

= One of the following:

success - a connect request is pending

failure - no connect request is pending

= The node name of the connection requestor
(returned only on success).

= An identification to be used for subsequent
references to the virtual circuit (returned only
on success).

(port id)

(port id)

SEND-DATA (port id, data; return)

return = One of the following:

success - data moved out of data buffer

failure - insufficient resources

RECEIVE-DATA (port id, buffer; length, return)

length = Length of received message in bytes if "return" is
'success''.

return = One of the following:

success - data placed in buffer

failure - no data placed in buffer

DISCONNECT (port id)

SENSE-STATE (port id; state)

state = One of the following:

REQUESTING (CONNECT issued - no response received)

RUNNING (ACCEPT function requested either locally
or remotely)

DISCONNECTED (DISCONNECT function requested either
locally or remotely)

CLOSE (port id)

This function causes the port id to become undefined. It is
normally used after the state is sensed to be DISCONNECTED.

4 .0 OPERATION

The operation of the logical terminal services module and the
distributed terminal communication services modules is described
below. A complete operational specification should include a model
implementation that is rigorous enough to answer most questions about
how to implement this architecture in a product and that is abstract
enough to be general. This specification lacks such a model
implementation; however, it will be updated to include one in the
future. For the present, the operational description takes the
narrative form.

4.1 Logical Terminal Services

The description of the interface to these services defines them
implicitly. Therefore, they are not elaborated on here.

4.2 Terminal Communication Services

The following description of the protocol messages exchanged between a
pair of terminal communication services modules covers the general
operation of the modules, the reasons for sending the messages, and
the processing of received messages.

In the descriptions the term "host module" refers to the host
system-resident terminal communication services module, and the term
'server module" refers to the server system-resident terminal
communication services module.

4.2.1 Protocol Message Overview - A pair of terminal communication
services modules communicate via the terminal communication protocol.
These modules are designed to use a virtual circuit communication
service. This service is assumed to contain connect, disconnect, and
data transfer functions. The message types in this protocol are
described in Table 4-1. The "direction" column indicates if the
message is sent from a host (H) to a server system (S) , from a server
system to a host, or from either one to the other.

Table 4-1 Terminal Communication Protocol Message Summary

Bind Request H ---> S requests a binding; identifies version and
type of sending system

Unbind H <--> S requests an unbinding

Bind Accept H <--- S accepts a bind request

Enter Mode H ---> S requests the entry of a new mode

Exit Mode H <--> S requests the exit of the current mode

Confirm Mode H <--- S confirms the entry of a new mode

No Mode H <--- S indicates that the requested mode is not
available or confirms an exit mode request

Common Data H <--> s carries data for common terminal services

Mode Data H <--> s carries data for mode-dependent terminal
services

4.2.2 Protocol Errors - A protocol error occurs when a protocol
message is received which cannot be interpreted in a way that will
ensure secure and synchronized operation. Unless otherwise specified,
the occurrence of non-zero values in unused or reserved fixed length
fields, and 1's in unused or reserved bits in bitmaps, can be ignored.
All other errors constitute a protocol error -- see Section 4.3,
Protocol Evolution for a statement of protocol compatibility.

A module detecting a protocol error disconnects the underlying virtual
circuit.

4.2.3 Connection Management Operational Overview - In the terminal
communication protocol, the host always sends the first message,
regardless of which party originated the virtual circuit. This is
done for compatibility with existing implementations of the DECnet
network virtual terminal specification, Version 1.0. In these
implementations, the server is responsible for supporting multiple
protocols and for communicating with a given host in the host's native
protocol.

After establishing a virtual circuit, the first message is a Bind
Request message; hence, the host is always the party that "requests"
the binding; the server "accepts" bindings.

In the following discussion of binding between the host system and the
server system, the term "outgoing binding" refers to a binding
originated by the system being discussed; "incoming binding" indicates
a binding originated by the other system.

Host System

The host terminal communication services module saves a list of mode
users (obtained from the REGISTER-MODE function) up to its internal
resource capacity.

Outgoing Bindings:

When a host module receives a BIND-NAME request, it places the portal
in the REQUESTING state and requests a virtual circuit connection to
the server system specified in the request. It specifies the server
module or a module that uses the terminal communication protocol
described in this specification.

(This specification does not attempt to specify the network or network
architecture that must be used for communication between a host module
and a server module. However, when Phase 111 DECnet is used, the
function above is accomplished by having the server module be object
type 24, decimal.)

If the attempt to form the virtual circuit fails, the portal state is
set to UNBOUND and the "reason" variable (returned on a
READ-PORTAL-BINDING-STATE) is set to "no communication", no
resources", or "destination system not a server", as appropriate.
 he latter return would be given if the virtual circuit service
cannot locate a module that supports the server side of this
protocol.)

If a virtual circuit is formed, the host module sends a Bind Request
message. The host module waits for a response message. If the
response is a Bind Accept message, the host module places the portal
in the BOUND state. If the response is a version 1.0 Bind message,
the host module places the logical terminal in the BOUND-1 state. If
the response is an Unbind messsage, the host module sets the portal
wreason" variable according to the REASON field from the message. If
any other message is received, a protocol error has occurred and the
host module places the portal in the UNBOUND state, sets the "reason"
variable to "protocol error", and disconnects the virtual circuit.
Note that use of reserved bits in the OPTIONS field is not treated as
a protocol error.

Incoming Bindings:

The host module examines lower level communication ports, looking for
a communication port that indicates an incoming virtual circuit either
directed at the host module or for a module that uses the terminal
communication protocol described in this specification. (If Phase I11
DECnet provides the communication functions, the host module is object
type 42, decimal.)

When the host module detects an incoming virtual circuit connect
request for itself, it accepts the connection if it has a portal in
the UNBOUND state; otherwise it rejects the connection. The host
module associates one of the UNBOUND portals with the virtual circuit
and places the portal in the ALLOCATED state.

When a higher level module issues the BIND function, the host module
places the portal in the REQUESTING state and sends a Bind Request
message. The host module waits for a response message.

The remainder of the incoming binding operation is identical to the
corresponding part of the outgoing binding operation, described above.

Unbinding:

If a higher level module requests the UNBIND function, the host module
places the portal in the UNBINDING state and sends an Unbind message
with reason "user unbind request". If the host module receives an
Unbind message, detects a protocol error, or is notified by the
underlying communication service that it has lost connection with the
server system, it places the portal in the UNBINDING state. If this
was due to a received Unbind message or a protocol error, the host
module disconnects the virtual circuit.

The host module places a portal back in the UNBOUND state after it has
received a number of UNBIND requests equal to the number of registered
modes or after either receiving an Unbind message from the server or
detecting the loss of the underlying virtual circuit.

NOTE

An UNBIND with a valid reason code should be sent
before breaking a virtual circuit. When a virtual
circuit is dropped without an UNBIND, there is no way
to differentiate between a successful shut-down and a
failure condition of a type which tears the virtual
circuit down without notice.

Closing:

When the CLOSE function is executed in the host, the host module
closes the virtual circuit associated with the binding and places the
portal in the UNBOUND state.

Server System

Outgoing Bindings:

When a server module receives a BIND request, it places the logical
terminal in the REQUESTING state and requests a virtual circuit
connection to the host specified in the request. It specifies the
host module or a module that uses the terminal communication protocol
described in this specification (see the discussion of host system in
Section 4.2.4, Mode Management Operational Overview).

If the attempt to form the virtual circuit fails, the logical terminal
state is set to UNBOUND and the "reason" variable (returned on a
READ-LOGICAL-TERMINAL-BINDING-STATE) is set to "no communication", "no
resources", or "destination system not a host", as appropriate. (The
latter return would be given if the virtual circuit service cannot
locate a module that supports the host side of this protocol.)

If a virtual circuit is formed, the server module waits to receive a
Bind Request message from the host. If any other message is received,
a protocol error has occurred. If a protocol error occurs, the server
module disconnects the virtual circuit. Note that use of reserved
values and bits in the OPSYS, SUPPORT, or OPTIONS fields are not
treated as protocol errors.

If no protocol error occurs, the server module processes the VERSION
value from the ~ i n d Request messaqe (described below), at the end of
the formation of an incoming binding. On receiving a valid Bind
Request from the host, the server returns a Bind Accept message. (The
NAME field of the Bind Request message does not apply in the case of a
server outgoing binding, because the server module has specified the
logical terminal for the binding.)

Incoming Bindings:

The server module examines lower level communication ports, looking
for a communication port that indicates an incoming virtual circuit
either directed at the server module or for a module that uses the
terminal communication protocol described in this specification.

When the server module detects an incoming virtual circuit connect
request for itself, it accepts the connection if it has a logical
terminal in the UNBOUND state; otherwise it rejects the connection.

The server module then waits to receive the first protocol messaqe.
This should be a Bind Request message. If any other message is
received, a protocol error has occurred. If a protocol error occurs,
the server module disconnects the virtual circuit. Note that use of
reserved values and bits in the OPSYS, SUPPORT, or OPTIONS fields are
not treated as a protocol error.

If no protocol error occurs, the server module examines the NAME field
from the Bind Request messaqe to ascertain if the requested terminal
exists. This examination proceeds as follows. The name may be any
length up to 40 characters. The server must support logical terminal
names of at least 6 characters. The name from the NAME field of a
Bind Request message matches a logical terminal name if they match
character for character, assuming the shorter name is padded with
blanks to the length of the longer name.

If the specified logical terminal does not exist, the server module
sends an Unbind message, setting the REASON field to "selected logical
terminal or portal does not exist". If the specified logical terminal
exists but is not in the UNBOUND state, the server module sends an
Unbind messaqe, setting the REASON field to "selected logical terminal
or portal is in use".

If the specified logical terminal is in the UNBOUND state, the server
module associates the logical terminal with the virtual circuit on
which the protocol messages have been received.

The server module then examines the VERSION value from the Bind
Request message. If the host module's version is other than 1.0, the
server module places the logical terminal in the BOUND state and sends
a Bind Accept message.

If the host module's Version is 1.0, the server module places the
logical terminal in the BOUND-1 state and sends a Bind message. This
message is sent in conformance with the DECnet network virtual
terminal specification, Version 1.0.

Unbinding:

Unbinding generally operates the same in the server system as in the
host system. In addition, the logical terminal services module
unbinds from a portal when it detects the disconnection of the
corresponding physical terminal. In this case, it sends an Unbind
message to the host with reason "terminal disconnected".

Closing:

When the CLOSE function is executed in the server, the server module
closes the virtual circuit associated with the binding and places the
logical terminal in the UNBOUND state.

4.2.4 Mode Management Operational Overview -

Host System

When a host module receives an ENTER-MODE request, it places the
portal in the ENTERING state and sends an Enter Mode message. It
should eventually receive either a confirm Mode or a No Mode message
in response. If a Confirm Mode message is received, the host module
places the portal in the IN-A-MODE state; if a No Mode message message
is received, the host module places the portal in the IN-NO-MODE
state. Until a response message is received, MODE data requested to
be transmitted is discarded.

When a host nodule receives an EXIT-MODE request, it places the portal
in the EXITING state and sends an Exit Mode message. It should
eventually receive a No Mode message. If the host module receives an
ENTER-MODE request before the EXIT-MODE request handling and protocol
operation is complete, it operates as described in the preceding
paragraph but must keep track of the order in which it expects to
receive response messages.

If a host module receives an Exit Mode message while the portal is in
the IN-A-MODE state, it places the portal in the EXITING state and
sends no more MODE data until a higher level module executes a
CONFIRM-EXIT request. It then places the portal in the IN-NO-MODE
state.

Server System

When a server module receives an Enter Mode message for a logical
terminal in the IN-A-MODE or IN-NO-MODE state, it examines the newly
requested mode. If the mode is registered, the server module places
the logical terminal in the CHANGING state. In this state, the
current mode access module may continue to transmit, but it will
receive no more messages. If the mode is not registered, the server
module places the logical terminal in the EXITING state and sends a No
Mode message.

In either the CHANGING or EXITING states, the current mode access
module must execute the CONFIRM-EXIT function. When this occurs for
the CHANGING state, the server module places the logical terminal in
the ENTERING state for the newly requested mode. When this occurs for
the EXITING state, the server module places the logical terminal in
the IN-NO-MODE state.

If the logical terminal state is ENTERING and the new mode access
module executes the CONFIRM-ENTER-MODE function, the server module
places the logical terminal in the IN-A-MODE state and sends a Confirm
Mode message.

When the server module receives an Exit Mode message, it places the
logical terminal in the EXITING state and sends a No Mode message. It
then operates as described in the case of receiving an Enter Mode
message for a non-registered mode.

When the server module receives an EXIT-MODE request, it sends an Exit
Mode message and places the logical terminal in the IN-NO-MODE state.

When a server module receives an Exit Mode message for a logical
terminal in the IN-NO-MODE state, it sends a No Mode message.

4.2.5 Data Transfer Operational Overview - Data transfer operates the
same in the host-system-to-terminal-system direction and the
terminal-system-to-host-system direction. The SEND-MESSAGE and
RECEIVE-MESSAGE functions are handled by passing the data in Data
messages to the virtual circuit service.

4.3 Protocol Evolution

Extensibility is a requirement of this specification. The philosophy
guiding the operation of a system in meeting this goal is the
following. Compatibility is the responsibility of the implementation
using the higher version of the protocol. Compatibility is guaranteed
only across one major version number (that part of the version number
before the decimal point) of the protocol and means the higher version
must use a subset of its protocol that is consistent with correct
operation of the implementation using the lower numbered version of
the protocol. Undefined fields, subfields, and illegal values are
protocol errors except for the Bind Request and Bind Accept messages
where they are ignored (so the version numbers can be exchanged).

4.4 Terminal Communication Protocol Messages

The way in which a virtual circuit is used to carry these messages is
described in Section 4.2.1, Protocol Message Overview. The format
rules used for the messages described below are the same as used in
Digital Network Architecture documents. Numbered bytes within a field
are transmitted lowest to highest (byte 0, byte 1, etc.). Reserved
values or bits in a bit map must be transmitted as zero. All messages
have the following form:

MSGTYPE MSGDATA

MSGTYPE (1) : B = Message type. One of the following:

1 - Bind Request
2 - reserved
3 - Unbind
4 - Bind Accept
5 - Enter Mode
6 - Exit Mode
7 - Confirm Mode
8 - No Mode
9 - Common Data
10 - Mode Data

In the message descriptions, the entire message format, including
MSGTYPE, is described for each message. For each message type, the
value of MSGTYPE is considered a constant.

4.4.1 Bind Request - The format of this message is compatible with
the Configuration message of the DECnet Network Virtual Terminal
Specification, Version 1.0.

MSGTYPE VERSION OPSYS SUPPORT REVISION ID OPTIONS NAME

MSGTYPE (1) : C = 1

VERSION (3) : B = The version of the protocol as:

byte 0 - version number (2)

byte 1 - ECO number (0)

byte 2 - customer modification number (0)

OPSYS (2) : B = The operating system type of the sender.
This field exists only for compatibility
with the DECnet Network Virtual Terminal
specification, Version 1.0. One of the
following:

Value
- - - - -

0
1
2
3
4
5
6
7
8
9
10
11
12

Definition

unspecified
RT-11
RSTS/E
RSX- 11s
RSX- 11M
RSX- 11D
I AS
VMS
TOPS-20
TOPS-10
0s-8
RTS-8
RSX- 11M+

SUPPORT (2) : BM = The terminal communication protocol(s)
supported by the sender (multiple bits may
be set). This field exists only for
compatibility with the DECnet Network
Virtual Terminal specification, Version 1.0.
Defined as:

Bit Definition
- - - ----------
0 RSTS/E DECnet homogeneous command

terminal.

1 RSX family DECnet homogeneous
command terminal.

2 VMS DECnet homogeneous command
terminal.

3 TOPS-20 DECnet homogeneous command
terminal.

4 Terminal communication protocol
this protocol).

5-15 Reserved.

REVISION (8) : A = The revision identification o f the
implementation sending this message; the
contents o f this field are
implementation-dependent.

ID (2) : B = The logical terminal id or portal id
associated by the sender with the binding.

OPTIONS (1) : BM = The options used by the sender, defined as:

NAME (1-40) : A = The name of the requested logical terminal
(valid only if the host initiated the
virtual circuit).

4.4.2 Unbind - The format of this message is compatible with the
Disconnect Request message of the DECnet Network Virtual Terminal
Specification, Version 1.0.

MSGTYPE REASON

MSGTYPE (1) : C = 2

REASON (2) : B = The reason for the unbinding. One of the
following:

1 - incompatible versions

2 - no portal available

3 - user unbind request

4 - terminal disconnected

5 - selected logical terminal or portal is
in use

6 - selected logical terminal or portal does
not exist

7 - protocol error detected

4.4.3 Bind Accept -

MSGTYPE VERSION OPSYS REVISION ID OPTIONS

MSGTYPE (1) : C = 4

VERSION (3) : B = The version of the protocol as:

byte 0 - Version number (2)

byte 1 - ECO number (0)

byte 2 - customer modification number (0)

OPSYS (2) : B = The operating system type of the sender.
This field exists only for compatibility
with the DECnet Network Virtual Terminal
specification, Version 1.0. One of the
following:

Value

0
1
2
3
4
5
6
7
8
9
10
11
12

Definition

Unspecified
RT- 11
RSTS/E
RSX-11s
RSX- 11M
RSX-11D
I AS
VMS
TOPS-20
TOPS-10
0s-8
RTS-8
RSX- 11M+

REVISION (8) : A = The revision identification o f the
implementation sending this message; the
contents o f this field are
implementation-dependent.

ID (2) : B = The logical terminal id or portal id
associated by the sender with the binding.

OPTIONS (1) : BM = The options used by the sender, defined as:

4 . 4 . 4 Enter Mode -

MSGTYPE MODE

MSGTYPE (1) : C = 5

MODE (2) : B = The requested mode. (See Appendix A.I.)

4 . 4 . 5 Exit Mode -

MSGTYPE

MSGTYPE (1) : C = 6

4.4.6 Confirm Mode -

MSGTYPE

MSGTYPE (1) : C = 7

4 . 4 . 7 No Mode -

MSGTYPE

MSGTYPE (1) : C = 8

4.4.8 Common Data - The common data message is used to exchange
protocol messages between mode-independent (common terminal service)
modules layered above foundation services. The common data message
supports blocking so more than one higher-level protocol message may
be blocked into one common data message for transmission over the
virtual circuit as a single unit. The CARRIED-MESSAGES field of the
common data message is defined as a set of two repeating subfields
where one pair of subfields is used for each protocol message blocked
into the common data message.

MSGTYPE FILL CARRIED-MESSAGES

MSGTYPE (1) : C = 9

FILL (1) : C = 0

CARRIED-MESSAGES = A field containing the following repeating
subfields where there is one instance of the
subfield pair for each higher-level protocol
message being blocked into the common data
message. The subfield pairs are arranged
sequentially in the common data message
after the FILL field. The subfield pair is:

LENGTH DATA

where:

LENGTH (2) : B = The length of the
following DATA subfield in
bytes.

DATA : A = A single higher-level
protocol message.

The total length of this message is
determined from the length informat ion
provided by the virtual circuit service.

NOTE

To the layered modules using
foundation services, blocked
messages appear to be transmitted
and received as separate messages.

4 . 4 . 9 Mode Data - The mode data message is used to exchange protocol
messages between mode-dependent modules layered above foundation
services. Like the common data message, the mode data message
supports blocking of carried protocol messages.

MSGTYPE FILL CARRIED-MESSAGES

MSGTYPE (1) : C = 10

FILL (1) : C = 0

CARRIED-MESSAGES = A field containing the following repeating
subfields where there is one instance of the
subfield pair for each higher-level protocol
message being blocked into the mode data
message. The subfield pairs are arranged
sequentially in the mode data message after
the FILL field. The subfield pair is:

LENGTH DATA

where:

LENGTH (2) : B = The length of the
following DATA subfield in
bytes.

DATA : A = A single higher-level
protocol message.

The total length of this message is
determined from the length information
provided by the virtual circuit service.

4 . 5 Identifiers for Foundation-maintained Characteristics

Table 4-2, Logical Terminal Characteristics; and Table 4 - 3 , Physical
Terminal Characteristics, contain lists of characteristics with the
corresponding identifiers and types as follows:

Boolean: BM(~) Low-order bit is the value (T = 1, F = 0)

Bit Map: BM(X) x specified individually

Integer: B(2) a 16-bit integer

String: A String of characters

Table 4-2 Logical Terminal Characteristics

Characteristic Identifier
-------------- ---------- Type

MODE-WRITING-ALLOWED

TERMINAL-ATTRIBUTES

TERMINAL-TYPE

OUTPUT-FLOW-CONTROL

OUTPUT-PAGE-STOP

FLOW-CHARACTER-PASS-THROUGH

INPUT-FLOW-CONTROL

LOSS-NOTIFICATION

LINE-WIDTH

PAGE-LENGTH

STOP-LENGTH

CR-FILL

LF-FI LL

WRAP

HORIZONTAL-TAB

VERTICAL-TAB

FORM- FEED

Boo lean

Bit Map BM(2)

String

Boolean

Boolean

Boolean

Boolean

Boolean

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Table 4-3 Physical Terminal Characteristics

Characteristic

INPUT-SPEED

OUTPUT-SPEED

CHARACTER-SIZE

PARITY-ENABLE

PARITY-TYPE

MODEM-PRESENT

AUTO-BAUD-DETECT

MANAGEMENT-GUARANTEED

SWITCH-CHARACTER-2

EIGHT-BIT

TERMINAL-MANAGEMENT-ENABLED

Integer

Integer

Integer

Boolean

Integer

Boolean

Boolean

Boolean

string

String

Boolean

Boolean

APPENDIX A

Standards and Suggested Standards

The body of this specification does not define the standard way in
which several of the specified capabilities may be used consistently
through a network. This appendix contains standards and suggested
standards for using some of these capabilities.

A.l Standard Mode Values

To be useful, the values of the MODE field in an Enter Mode message
require a networkwide standard definition. The standard definition of
MODE is as follows:

MODE (2) : BM = DDDD MMMM MMMM MMMM

DDDD = Mode type having the following values:

1 Private

2 User

where

Corporate wide modes are DEC written modes
which will be fairly widely accessible
(i.e., implemented by most of DEC's systems)
and must be approved by the Terminal Review
Group.

Private modes are DEC written modes which
are registered with the TRG but not
necessarily approved by the TRG and are not
as widely supported, perhaps only on a
single system.

Standards and Suggested Standards

User Modes not known to the TRG for use by
DEC customers, particularly, OEMs and
universities, wanting to write their own
modes -- the responsibility of coordinating
these mode identification values rests with
the users.

= The mode identification value within each of
the above Mode Types.

Mode id values for the Corporate wide modes
are:

Value Mode
- - - - - ----

0 Invalid

1 Command mode

Mode id values for the private modes are:

Value Mode
----- ----

0 Invalid

- To be defined

Mode id values for user modes are not
defined here.

A.2 Suggested Setup/Normal Mode

Switching Characters The following definition o f the
Switch-character-1 and Switch-character-2 terminal characteristics is
suggested.

Switch-character-1 = control-\
Switch-character-2 = carriage return

DECnet Digital Network Architecture
Network Virtual Terminal
Foundation Services

READER'S COMMENTS
AA-DY89A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you fiid errors in this manual? If so, specify the error and the page number.

Please indicate the type of userlreader that you most nearly represent.

0 Assembly language programmer
0 Higher-level language programmer
0 Occasional programmer (experienced)
0 User with little programming experience
0 Student programmer
0 Other (please specify)

Name Date

Organization

City State Zip Code
or

Country

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N 0 . 3 3 MAYNARD MASS.

b

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE DOCUMENTATION
1925 ANDOVER STREET TWOlEO7
TEWKSBURY, MASSACHUSETTS 01 876

Necessary

