
DECnet Digital Network Architecture 
Phase IV 
Ethernet Data Link Functional Specification 
Order No. AA-Y298A-TK 



 



DECnet Digital Network Architecture 
Phase IV 
Ethernet Data Link Functional Specification 
Order No. AA-Y298A-TK 

December 1983 

This document describes the structure, functions, interfaces, and proto- 
cols of the DNA Ethernet Data Link not defined in the Ethernet Specifica- 
tion that make it compatible with DNA. 

SUPERSESSIONIUPDATE INFORMATION: This is a new manual. 

VERSION: 1 .O.O 

To order additional copies of this document, contact your local 
Digital Equipment Corporation Sales Office. 1 

digital equipment corporation magnard, massachusetts 



First Printing, December 1983 

The information in this document is subject to change without notice and should not be construed as a 
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license and may only be used or copied in 
accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by 
DIGITAL or its affiliated companies. 

Copyright @ 1983 by Digital Equipment Corporation 

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the user's 
critical evaluation to assist us in preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DECUS 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 
ASSIST-11 
VAX 
DECnet 
DATATRIEVE 

DECsystem-10 
DECtape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB-8 
DECSYSTEM-20 
RTS-8 
VMS 
IAS 
TRAX 

MASSBUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET- 11 
TMS-11 
m s - 1 0  
SBI 
PDT 

Distributed Systems Publications typeset this manual using DIGITAL'S 
TMS-11 Text Management System. 

MGTPEALL 



Table of Contents 

CONTENTS 

Page 3 

. . . . . . . . . . . . . . . . . . . .  INTRODUCTION 

. . . . . . . . . . . . . . .  FUNCTIONAL DESCRIPTION 6 . . . . . . . . . . . . . . . . . . .  Designscope 6 
Requirements . . . . . . . . . . . . . . . . . .  7 . . . . . . . . . . . . . . . . . . . . .  Goals 7 
Non-Goals . . . . . . . . . . . . . . . . . . .  7 

. . . . . . . . . . . . . . . . . . . . . . .  MODELS 8 
Relationship to DIGITAL Network Architecture . . .  8  . . . . . . . . . .  DNA Ethernet Data Link Model 10 . . . . . . . . . . . . . . .  Resource Naming 11 . . . . . . . . . . . . . . .  DataLinkStates 11 

. . . . . . . . . . . . . . . . . . . .  INTERFACES 13 . . . . . . . . . . . . . . . . .  User Interface 13 . . . . . . . . . . . . . . . . . . . . .  Open 15 . . . . . . . . . . . . . .  ~nable-promiscuous 16 . . . . . . . . . . . . .  Disable-promiscuous 16 . . . . . . . . . . . . . . .  Enable-protocol 17 . . . . . . . . . . . . . . .  Disable-protocol 18 . . . . . . . . . . . . . . .  Enable-multicast 18 . . . . . . . . . . . . . .   isa able-multicast 19 . . . . . . . . . . . . . . . . . . . .  Close 20 . . . . . . . . . . . . . . . . . . .  Transmit 20 . . . . . . . . . . . . . . . .  Transmit-poll 2 1  . . . . . . . . . . . . . . . . . . .  Receive 22 . . . . . . . . . . . . . . . . .  Receive-poll 23 . . . . . . . . . . . . . . . .  Receive-abort 25 
Network Management Interface . . . . . . . . . .  25 . . . . . . . . . . . . . . . . .  ~ead-channel 26 . . . . . . . . . . . . . . .  Read-portal-list 27 . . . . . . . . . . . . . . . . .  Read-portal 27 . . . . . . . . . . . . . . . . . . . .  Reset 28 . . . . . . . . . . . . . . . . .  Set-address 28 . . . . . . . . . . . . . . . .  Enable-channel 29 . . . . . . . . . . . . . . .  Disable-channel 30 . . . . . . . . . . . . . . . .  Read-counters 30 . . . . . . . . . . . . . . . . . .  Read.event 31 . . . . . . . . . . . . . .  Ethernet Interfaces 32 

Client to Data Link Interface . . . . . . . .  33 
Network Management to Data Link Interface . . 34 
Network Management to Physical Link Interface 34 

NETWORK MANAGEMENT INFORMATION . . . . . . . . . .  35 . . . . . . . . . . . . . . . . . . . .  Counters 35 . . . . . . . . . . . . . . . . . . . . .  Events 39 

. . . . . . . . . . . . .  INTERFACE USAGE EXAMPLES 43 . . . . . . . . . . . . . .  Portal Filter Setup 43 . . . . . . . . . . . . .  Data Error Diagnostic 4 3  



Table of Contents Page 4 

7 OPERATION . . . . . . . . . . . . . . . . . . . .  44 . . . . . . . . . . . . . . . . .  7.1 Portal Handler 46 . . . . . . . . . . . . . . . . . . . . .  7.1.1 Open 46 . . . . . . . . . . . . . .  7.1.2 Enable-promiscuous 47 . . . . . . . . . . . . .  7.1.3 Disable-promiscuous 47 . . . . . . . . . . . . . . .  7.1.4 Enable-protocol 48 . . . . . . . . . . . . . . .  7.1.5 Disable-protocol 48 
Enable-multicast . . . . . . . . . . . . . . .  48 7.1.6 . . . . . . . . . . . . . .  7.1.7 Disable-multicast 49 . . . . . . . . . . . . . . . . . . . .  7.1.8 Close 49 

7.1.9 Transmit . . . . . . . . . . . . . . . . . . .  49 
7.1.10 Transmit-poll . . . . . . . . . . . . . . . .  49 
7.1.11 Receive . . . . . . . . . . . . . . . . . . .  50 . . . . . . . . . . . . . . . .  7.1.12 Receive-abort 50 . . . . . . . . . . . . . . . . .  7.1.13 Receive-poll 51 . . . . . . . . . . . .  7.2 Transmitter and Receiver 51 . . . . . . . . . . . . . . . . .  7.2.1 Transmitter 51 
7.2.2 Receiver . . . . . . . . . . . . . . . . . . .  51 . . . . . . . . . . . . . . . . . . .  7.2.3 Counters 52 
7.2.4 Events . . . . . . . . . . . . . . . . . . . .  55 

APPENDIX A PROTOCOL TYPES AND MULTICAST ADDRESSES 

. . . . . . . . . . . .  CROSS-COMPANY ASSIGNMENTS A-1 . . . . . . . . . . . . . . .  DIGITALASSIGNMENTS A-1 



Introduction Page 5 

1 INTRODUCTION 

The Digital, Intel, Xerox intercompany Ethernet specification is the 
basis for defining the DNA (DIGITAL Network ~rchitecture) Ethernet 
Data Link. The DNA Ethernet Data Link incorporates the functions and 
operations defined in the Ethernet Specification Version 2.0. To 
these, the DNA Ethernet Data Link adds further features needed by the 
upper layers of DNA. This specification assumes understanding of the 
Ethernet specification. 

This document describes the structure, functions, interfaces, and 
protocols of the DNA Ethernet Data Link not defined in the Ethernet 
specification that make it compatible with DNA. DNA is the model on 
which DECnet implementations are based. A DECnet network is a family 
of software modules, data bases, and hardware components used to tie 
DIGITAL systems together for resource sharing, distributed computation 
or remote system communication. 

DNA is a layered structure. Modules in each layer perform distinct 
functions. Modules within a single DNA layer (but typically in 
different computer systems) communicate using specific protocols. 
Modules in different layers (but typically in the same computer 
system) interface using subroutine calls or a system-dependent method. 
In this document interfaces are described in terms of calls to 
subroutines. 

This document assumes that the reader is familiar with computer 
communications and DECnet. The primary audience consists of those who 
implement DECnet systems. However, the document may be useful to 
anyone 
current 

DNA 

DNA 

DNA - 

DNA - 

DNA - 

DNA - 

DNA 

DNA - 

interested in the details of DECnet structure. The other 
DNA functional specifications are: 

Data Access Protocol (DAP) Functional Specification, Version 
5.6.0, Order No. AA-K177A-TK 

a Data Communications Message Protocol (DDCMP) 
Functional Soecification, Version 4.1.0, Order No. AA-K175A-TK 

Ethernet Node Product Architecture Specification, Version 
1.0.0, 0 r d a o .  AA-X440A-TK 

Maintenance Operations Functional Specification, Version 
3.0.0, Order No. AA-X436A-TK 

Network Management Functional Specification, Version 4.0.0, 
Order No. AA-X437A-TK 

Network Services Protocol Functional Specification, Version 
4.0.0, Order No. AA-X439A-TK 

Routing Layer Functional Specification, Version 2.0.0, Order 
NO. AA-X435A-TK 

Session Control Functional Specification, Version 1.0.0, Order 
NO. AA-K182A-TK 



Introduction Page 6 

The Ethernet; a Local Area Network; Data Link Layer and Physical - - - 
Layer ~p~cifications, Version 2 . 0 7 ~ 1 g i t a 1 ,  Intel, and 
Xerox), Order No. AA-K759B-TK 

The DECnet DIGITAL Network Architecture (Phase - IV) General Description 
(Order No. AA-N149A-TC) provides an overview of the network 

specifications. 

2 FUNCTIONAL DESCRIPTION 

The Ethernet functions are a subset of those included by the DNA 
Ethernet Data Link. The DNA Ethernet Data Link has two classes of 
functions: 

. User -- the data communication services that DNA Ethernet Data 
Link provides for higher layers. In the context of this 
specification, the user is the next layer up in the network 
architecture, rather than the end user at the top layer. 

. Network Management -- the control and observation services 
needed to maintain the Data Link. 

The DNA Ethernet Data Link gives its users a communication service for 
transmitting and receiving frames, but does not guarantee delivery. 
The data link filters incoming frames by system address and protocol 
type based on filter values established by the user. 

A specific system (physical address), a function-oriented group of 
systems (multicast address), or all systems (broadcast address) can be 
addressed using the data link. Each frame has a protocol type 
assigned to it that is used by the data link to identify the protocol 
handling module that is to receive it. 

The use of protocol types allows concurrent operation of multiple 
protocols in the layer above the data link. For example, in DNA the 
Routing layer and the DNA Ethernet Data Link Loop Testing Service can 
both use the DNA Ethernet Data Link at the same time. Neither needs 
to be aware of the other. This is in contrast to the DDCMP Data Link 
where maintenance traffic and normal traffic use mutually exclusive 
modes of protocol operation. I 

The DNA Ethernet Data Link provides control and observation services 
needed to maintain the data link. These are functions that enable and 
disable physical channels and monitor the status of specific channels. Â 

2.1 Design Scope 

The DNA Ethernet Data Link requires certain characteristics to be 
present, attempts to meet certain goals, and lacks some features that 



Functional Description Page 7 

are not within the scope of the design. 

2.1.1 Requirements 

The DNA Ethernet Data Link design must have the following 
characteristics: 

. All capabilities included in the Ethernet Specification are 
available from the DNA Ethernet Data Link. 

. The network manager can control and observe the data link as 
it functions. 

. It complies with the Ethernet Specification. 

2.1.2 Goals 

The DNA Ethernet Data Link design attempts to have the following 
characteristics: 

. Uses both processor and memory efficiently. 

. Common functions needed by higher layers are included in the 
data link. 

. Inputs and outputs are simple, predictable, and consistent. 

2.1.3 Non-Goals 

DNA Ethernet Data Link design does not attempt to have the following 
characteristics: 

. Addition of functions not included in the Ethernet 
specification that higher layers may want to implement 
differently (such as reliable delivery). 

. Self-diagnosis of all data link problems. Diagnosis of some 
problems requires information from higher layers. 



Models Page 8 

3 MODELS 

This section describes the relationship of the DNA Ethernet Data Link 
to other network layers and modules. Although this specification 
primarily relates the DNA Ethernet Data Link to DNA, the same 
relationships can also be applied within other network architectures. 

3.1 Relationship to DIGITAL Network Architecture 

Figure 1 shows the relationship of the DNA Ethernet Data Link to the 
DNA hierarchy. 



Mode 1 s Page 9 

The DNA Ethernet Data Link resides within the DNA Data Link layer. It 
can be co-resident with other DNA Data Link modules such as DDCMP or 
X . 2 5 .  

In figure 1, horizontal arrows show direct access for control and 
observation of parameters, counters, etc. Vertical arrows show 
interfaces between layers for normal user operations such as file 
access, down-line load, and logical link usage. 

Each layer in DNA consists of functional modules and protocols. 
Generally, modules use the services of the next lower layer. In this 
document the service relationship is demonstrated in the way the 
interfaces are modeled, as calls to subroutines. Note that the 
Network Management layer interfaces directly with each of the lower 
layers. Also, the layers above Session Control interface directly 
with it. For this reason the upper three layers are sometimes 
referred to as the "end user." 

Modules of the same type in the same layer communicate with each other 
to provide their services. The rules governing this communication and 
the messages required constitute the protocol for those modules. 
Messages are typically exchanged between equivalent modules in 
different nodes. However, equivalent modules within a single node can 
also exchange messages. 

A brief description of each layer follows in order from the highest to 
the lowest layer: 

User layer. The highest layer, the User layer supports user 
services and programs. Programs such as the Network Control 
Program, which interfaces with the Network Management layer, 
and file transfer programs, which interface with the Network 
Application layer, reside in the user layer. 

Network Management layer. The Network Management layer is the 
only one that has direct access to each lower layer for 
control purposes. Modules in this layer provide user control 
over and access to network parametersand counters. These 
modules also perform up-line dumping, down-line loading, and 
testing functions. 

Network Application layer. Modules in the Network Application 
layer support network functions, such as remote file access 
and file transfer, used by the User and Network Management 
layers. 

Session Control layer. The Session Control defines the 
system-dependent aspects of logical link communication, which 
allows messages to be sent from one node to another in a 
network. Session Control functions include name to address 
translation, process addressing, and, in some systems, process 
activation and access control. 



Page 10 Models 

5. 

6. 

7. 

8 .  

End Communication layer. The End Communication layer defines 
the system-independent aspects of logical link communication. 

Routing layer. Modules in the Routing layer route messages, 
called packets, between source and destination nodes. 

Data Link layer. The Data Link layer defines the protocol 
concerning data integrity and physical channel management. 

Physical Link layer. The Physical Link layer encompasses a 
part of the device driver for each communications device plus 
the communications hardware itself. The hardware includes 
interface devices, modems, and the communication lines. 

3.2 DNA Ethernet Data Link Model 

The DNA Ethernet Data Link provides communication services for 
multiple concurrent users. It also supports multiple Ethernet 
channels. A channel is defined as a single hardware connection to an 
Ethernet cable. Each channel implements the cross-company Ethernet 
standard. 

The following diagram shows the relationship of these users to the DNA 
Ethernet Data Link and its relationship to the standard Ethernet Data 
Link. In Ethernet terminology, the DNA Ethernet Data Link is the 
lowest level module in the Client Layer. 

/ I \ 
Channel 1 Channel 2 ... Channel m 

/ I \ 

1 E T H E R N E T  D a t a  L i n k  1 

DNA 
Ethernet 
Data 
Link 



Models Page 11 

3 . 2 . 1  Resource Naming 

The user of the DNA Ethernet Data Link is concerned with two different 
levels of identification. Users identify either a channel or a 
portal. 

. A channel is a particular Ethernet hardware connection. Each 
channel has one name and each name identifies one channel. 

. A portal represents a particular user's data base needed by 
the data link to service that user's requests. A portal is 
assigned by the data link in response to a user's initial 
call. The user then uses that portal in subsequent related 
calls. Many users can simultaneously have their own portal 
associated by the data link with the same channel. 

A portal data base contains the lists of protocol types and 
multicast addresses that the user has enabled for receipt of 
incoming frames. The user will receive frames only for 
enabled protocol types and multicast addresses. It also 
contains the lists of outstanding transmits and receives for 
the user. 

3 .2 .2  Data Link States 

In observing the operation of the data link, the user can see four 
channel states. Some of these states are reached due to network 
management commands, others due to data link operation. The states 
are: 

. Off -- the channel is not available. 

. Init -- the channel is being initialized and tested by the 
data link. This test is an implementation dependent 
self-test. 

. On -- the channel is available for use. 

. Broken -- an attempt was made to turn the channel on, but it 
failed the initialization test, or the channel was on but the 
data link determined that the channel would now fail the 
initialization test. 

Changes between these states do not affect counters or parameters such 
as the node's physical address. 



Mode 1 s Page 12 

The following diagram shows the data link state transitions for a 
channel : 

..................... 
I  ++++ I  
v v + 

----- ------ 
I ---- Key: 

. -- I 1 <--- I I I  1 +++ 
I  o f f  I  I  init I * * * >  on I  + --- Management Disable 
- > I  1 +++> 1 I I  1 <++  - - _ _  1 - - - - I  ---- I +++ Management Enable 

A A * * 
I  + * * ***  Data Link Operation 
I  + v * 
I -------- * 
------ I  broken I  <*****  

I -------- 

Network management can enable the channel. From the "off" or "broken" 
states, this enable causes a transition to "init". From the "on" 
state, enable has no effect. 

In the "init" state, the data link performs initialization and test of 
the channel. If this succeeds, the data link changes the state to 
'on". If initialization and test fail, the data link changes the 
state to "broken". 

From the "broken" state, network management can either try 
initialization again with an enable command or go to "off" with a 
disable command. 

The data link can change the state from "on" to "broken" at any time 
if it determines that the channel would fail initialization and test. 

The channel can be forced to "off" from any state by a network 
management disable command. 



Interfaces Page 13 

4 INTERFACES 

The following sections describe the interfaces provided by DNA 
Ethernet Data Link. They are the following: 

. User Interface -- contains the functions to transmit and receive 
data between data links. 

. Network Management Interface -- contains the control and 
observation functions for the local data link. 

The function descriptions are in terms of subroutines with input and 
output arguments. These subroutines are to be understood as abstract, 
functional descriptions. Actual implementations may vary, for example 
in synchronization techniques, as long as they provide the same 
functions. Furthermore, these are models for privileged, internal 
system interfaces. They are not necessarily to be used as high level 
user interfaces. 

The interfaces use the two levels of identification defined in the 
Model section. Callers identify the object of a call in terms of 
either channel-id or portal-id. 

In many of the interface functions, the caller can specify an Ethernet 
address. In some cases this address can be either a physical address 
or a multicast address. In other cases it is restricted to one or the 
other. In implementations that allow expression of one of the forms 
of address in a case where it is invalid, the implementation must 
reject the function request with an appropriate error return code. 

The interface descriptions assume that buffers are passed in the form 
of a descriptor that contains buffer address, maximum buffer length, 
and, if applicable, length of information in buffer. 

This section also contains an overview of the required interface 
functions from the intercompany Ethernet specification. 

4.1 User Interface 

This section describes the User Interface to the DNA Ethernet Data 
Link. The User Interface maintains portals for transmission and 
reception of frames through the data link on behalf of the user. The 

Â user can enable or disable broadcast and multicast addresses and 
appropriate protocol types on specific portals for flexible filtering 
of incoming frames. The User Interface provides functions for queuing 
frames and monitoring the status of those queued requests. 



Interfaces Page 14 

The 

. 

interface contains the following functions: 

Open -- open a portal. 

Enable-promiscuous -- enable all protocol types and multicast 
addresses for a portal. 

Disable-promiscuous -- disable the blanket protocol type and 
multicast address enable for a portal. 

Enable-protocol -- enable a protocol type for a portal. 

Disable-protocol -- disable a protocol type for a portal. 

Enable-multicast -- enable a multicast address for a portal. 

Disable-multicast -- disable a multicast address for a portal. 

Close -- close a portal. 

Transmit -- send a frame. 

Transmit-poll -- checks for completion of a Transmit. 

Receive -- receive a frame. 

Receive-abort -- Aborts a Receive. 

Receive-poll -- checks for completion of a Receive. 

Some features in the interface descriptions are optional. Features 
can be optional for caller or implementor or both. Caller-optional 
features can be invoked at the user's option. Implementor-optional 
features may or may not be included in particular implementations 
based on product requirements. 

A portal will receive only those frames that match the filtering 
criteria set up with the enable and disable functions. These 
functions can be invoked multiple times for the same portal, allowing 
a single portal to receive many protocol types and multicast 
addresses. Alternatively, a portal can enable promiscuous receipt. 
This is exclusive of individual enables or disables, and allows the 
portal to receive all protocol types and multicast addresses. 

Enabling of a protocol type automatically implies receipt of frames 
addressed to the channel's physical address. A portal receives 
multicast frames only for those multicast addresses it specifically 
enables. In this context, broadcast is treated the same as other 
multicast addresses. Multicast addresses enabled or disabled on one 
portal have no effect on other portals. 

Conceptually, receive filtering is done first by protocol type, then 
by multicast address. A frame that does not pass filtering is 
discarded. In actual practice, an implementation may first filter in 
hardware the union of the multicast addresses for all portals and then 



Interfaces Page 15 

do the filtering again on a reduced number of frames. 

4.1.1 Open 

The open function opens a portal so that the user can transmit and 
receive frames. 

Inputs: 

Channel-id - the unique identification of the Ethernet hardware on 
which the portal is to be opened. 

Pad - a user flag that indicates whether the data link is to pad 
frames that are under minimum length. Padding is 
accomplished via data link generated additions to user 
data. It is the responsibility of the user's protocol 
conventions to define that its protocol modules in 
other systems will either request the same option or 
will understand the padding conventions. The data link 
will apply padding conventions to both transmitted and 
received messages for the portal. 

outputs: 

Return-code - the status of the request. One of: 

Success - a portal was opened. 

No resources - the DNA Ethernet Data Link does not 
have sufficient resources to open a portal. 

Unrecognized channel - there is no channel with the 
specified identification. 

Channel not on - a portal cannot be opened because 
the channel state is not "on". 

Promiscuous receiver active - a portal cannot be 
opened because some other portal has enabled 
promiscuous receive. This error return applies 
only in implementations that limit promiscuous 
receive to a single portal (see the 
Enable-promiscuous function). 

Portal-id - a portal identification to be used in the other user 
interface functions. 



Interfaces Page 16 

The Enable-promiscuous function indicates that the portal is to 
receive all frames regardless of protocol type or multicast address. 
If a portal has this enable function in effect, it cannot explicitly 
enable individual protocol types or multicast addresses. 

Three possible implementations of this function are allowed: 

1. Not implemented. The function fails. 

2. Exclusive use only. The function fails if any other portal is 
open or if this portal has any protocol types or multicast 
addresses enabled. 

3. Non-exclusive use. The function always succeeds. Any frames 
that would have been delivered to another portal are duplicated 
and delivered to this one also. This is in addition to all other 
frames. 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

outputs: 

Return-code - the status of the request. One of: 

Success - promiscuous receive enabled. 

Not implemented - the implementation does not 
support the requested function. 

Non-exclusive - the implementation allows only 
exclusive promiscuous receipt and this portal or 
some other portal has a.protoco1 type or multicast 
address enabled. 

Unrecognized portal - there is no open portal with 
the specified identification. 

Channel not on - the function failed because the 
channex state is not "on". 

The Disable-promiscuous function indicates that the portal is no 
longer to receive frames for all protocol types and multicast 
addresses. 



Interfaces Page 17 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

Protocol-type - a protocol type that is to be recognized for this 
portal. 

outputs: 

Return-code - the status of the request. One of: 

Success - promiscuous receive is not enabled for 
the portal. 

Unrecognized portal - there is no open portal with 
the specified identification. 

The Enable-protocol function adds a protocol type to the list of those 
that the portal wishes to receive. The function fails if the protocol 
type is enabled by some other portal. 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

Protocol-type - a protocol type that is to be recognized for this 
portal. 

outputs: 

Return-code - the status of the request. One of: 

Success - the protocol type is enabled. 

Protocol type in use - this portal cannot enable 
the protocol type because some other portal already 
has it enabled. 

No resources - the DNA Ethernet Data Link does not 
have sufficient resources to enable another 
protocol type. 

Unrecognized portal - there is no open portal with 
the specified identification. 



Interfaces Page 18 

Promiscuous receive active - the function failed 
because this portal has enabled promiscuous 
receive. This error return applies only in 
implementations that limit promiscuous receive to a 
single portal (see the Enable-promiscuous 
function). 

Channel not on - the function failed because the 
channel state is not "on". 

The Disable-protocol function indicates that the portal is no longer 
to receive frames for a protocol type. 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

Protocol-type - a protocol type that is no longer to be recognized 
for this portal. 

outputs: 

Return-code - the status of the request. One of: 

Success - the protocol type is not enabled for the 
portal. 

Unrecognized portal - there is no open portal with 
the specified identification. 

The Enable-multicast function adds a multicast address to the list of 
those that the portal wishes to receive. 

Portal-id - a portal identification assigned by the Open function. 

Multicast-address - a multicast address that is to be recognized 
for this portal. 



Interfaces Page 19 

outputs: 

Return-code - the status of the request. One of: 

Success - the multicast address is enabled. 

No resources - the DNA Ethernet Data Link does not 
have sufficient resources to enable another 
multicast address for this portal. 

Unrecognized portal - there is no open portal with 
the specified identification. 

Promiscuous receive active - the function failed 
because this portal has enabled promiscuous 
receive. This error return applies only in 
implementations that limit promiscuous receive to a 
single portal (see the Enable-promiscuous 
function). 

Channel not on - the function failed because the 
channel state is not "on". 

The Disable-multicast indicates that the portal is no longer to 
receive frames for a multicast address. 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

~ulticast-address - a multicast address that is no longer to be 
recognized for this portal. 

outputs: 

Return-code - the status of the request. One of: 

Success - the multicast address is not enabled for 
the portal. 

Unrecognized portal - there is no open portal with 
the specified identification. 



Interfaces 

4.1.8 Close 

Page 20 

The Close function closes an open portal and releases all its 
resources. A portal cannot be closed unless all outstanding transmit 
or receive requests are completed. 

CLOSE(PO~~~~-id,Return-code) 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

Outputs: 

Return-code - the status of the request. One of: 

Success - the portal is closed. 

Unrecognized portal - there is no open portal with 
the specified identification. 

Calls outstanding - there are uncompleted transmit 
or receive requests outstanding on the portal. 

4.1.9 Transmit 

The Transmit function queues a frame to be transmitted. The user 
tests for completion by using Transmit-poll. Transmission of a frame 
always succeeds or fails within such a small amount of time that an 
abort function is not necessary. 

The user can have multiple outstanding Transmits, up to the limit 
allowed by the implementation. 

NOTE 

Ethernet does not guarantee attempted delivery of 
fewer than 46 mbytes or more than 1500 bytes of user 
data. The DNA Ethernet Data Link may attempt 
transmission, but the result is unspecified. 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 
Destination-address - the address of the frame destination. This 

can be either a physical address or a multicast 
address. As a matter of good citizenship, users should 



Interfaces Page 21 

not transmit to the broadcast address unless the 
message is intended for all systems, regardless of 
their function or manufacturer. 

Protocol-type - identifies the protocol at the receiving system. 

Input-buffer - a buffer containing the data to be sent. If the 
data is shorter than the minimum Ethernet message size 
and padding is not enabled, or the data is longer than 
the maximum Ethernet message size, then the frame may 
not arrive at the destination. If padding is enabled 
there is no minimum size, and the maximum size is the 
Ethernet limit minus two bytes. Until the request is 
completed (as sensed via ~ransmit-poll), the user must 
not disturb the contents of the buffer. 

CRC-32 - a caller- and implementation-optional 32-bit cyclic 
redundancy code that is to be used for this frame. 
This overrides the one normally supplied by the data 
link. 

Outputs: 

Return-code - the status of the request. One of: 

Request accepted - DNA Ethernet Data Link will 
attempt to transmit the frame. Notification of 
completion is via the Transmit-poll function. 

CRC control not available - the user attempted to 
supply a CRC and the implemention either does not 
support or allow the function. 

No resources - the DNA Ethernet Data Link does not 
have sufficient resources to queue another transmit 
for this portal. 

Unrecognized portal - there is no open portal with 
the specified identification. 

Channel not on - the function failed because the 
channel state is not "on". 

The Transmit-poll function checks for the completion of a transmit 
request. The data link transmits frames in the order in which the 
user submits them. 

Successful completion of this function implies only that the local 
transmitter believes that it sent the frame. It has no implication 
relative to reception by the destination. 



Interfaces Page 22 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

Outputs: 

Return-code - the transmit request for this portal. One of: 

Not complete - no outstanding transmit for this 
portal is done. 

None outstanding - there are no outstanding 
transmits for this portal. 

Transmit successful - a frame successfully left the 
local transmitter. 

Transmit failed - the local transmitter could not 
transmit the frame. 

Unrecognized portal - there is no open portal with 
the specified identification. 

Channel left "on" state - the function failed 
because the channel is no longer in the "on" state. 

Input-buffer - the buffer that was supplied in the Transmit 
function. 

Error-detail - the caller-optional reason for a return-code of 
transmit failed". Detailed explanation of these 
reasons is in the section on events. One of: 

Excessive collisions 
Carrier check failed 
Short circuit 
Open circuit 
Frame too long 
Remote failure to defer 

Fault-distance - the caller-optional distance in bit times to a 
short or open circuit. This is meaningful only when 
error-detail is "short circuit" or "open circuitn. 

4.1.11 Receive 

The Receive function queues a buffer to receive a frame. 



Interfaces Page 23 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

Receive-bad - a caller- and implementation-optional indication 
that frames are to be returned even though they contain 
invalid data, This includes frames with CRC or framing 
errors. 

Output-buffer - a descriptor of a buffer to contain the received 
frame. 

outputs: 

Return-code - the status of the request. One of: 

Request accepted - If a message is received for the 
specified portal, the DNA Ethernet Data Link will 
put it into the buffer. Notification of completion 
is via the Receive-poll function. 

Receive-bad not implemented - the call requested 
receipt of bad frames but the implementation does 
not support the function. 

No resources - the DNA Ethernet Data Link does not 
have sufficient resources to queue another receive 
for this portal. 

Unrecognized portal - there is no open portal with 
the specified identification. 

Channel not on - the function failed because the 
channel state is not "on". 

Frames-lost - the caller-optional count of the number of frames 
for this portal that were discarded because no buffer 
was available. Note that this count can be incorrect 
if frames were lost at a low enough level that portal 
filtering could not be done. This argument is not 
required \in implementations where the buffering is 
always available. 

The Receive-poll function checks for the completion of a receive 
request. The data link gives received frames to the user in the order 
in which they arrived. 



Interfaces Page 24 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

outputs: 

Return-code - the status of the receive request. One of: 

Not complete - no outstanding receive for this 
portal is done. 

None outstanding - there are no outstanding 
receives for this portal. 

Receive successful - a frame was successfu~~y 
received into the buffer. 

Receive with overrun - a frame was successfully 
receivedI but had to be truncated to fit into the 
buffer. 

Length error - the received frame length was 
inconsistent with the length recorded by the 
padding conventions. The buffer contains the data 
receivedI including the padding information and 
truncated if it was too long to all fit in the 
buffer. 

Invalid data - a frame was received with bad data. 
This return-code value is only seen if on the 
Receive function the caller requested delivery of 
bad frames. 

Receive aborted - the user cancelled the receive 
request with the Receive-abort function. 

Unrecognized portal - there is no open portal with 
the specified identification. 

Channel left .bb "on'' state - the function failed 
because the channel is no longer in the "on" state. 

Error-detail - the caller-optional reason for a return-code of 
"invalid data". Detailed explanation of these reasons 
is in the section on events. One of: 

Block check error 
Framing error 
Frame too long 

Destination-address - the address to which the received frame was 
addressed. 

Source-address - the address of the system that transmitted the 
received frame. 



Interfaces Page 25 

Protocol-type - the protocol type from the received frame. 

Output-buffer - the received data. 

Bytes-lost - the number of bytes lost when the return-code is 
"receive with overrun". This argument is optional both 
for user and implementor. If it is applicable but not 
implemented, it returns a value of "not implemented". 

CRC-32 - the caller-optional 32-bit cyclic redundancy code that 
came into the data link with the frame. 

The Receive-abort function aborts all incomplete receive requests for 
the portal. The buffers are returned via the Receive-poll function. 
They may be returned as aborted or as normally completed. 

Inputs: 

Portal-id - a portal identification assigned by the Open function. 

outputs: 

Return-code - the status of the request. One of: 

Success - the request is now complete. 

Unrecognized portal - there is no open portal with 
the specified identification. 

None outstanding - there are no outstanding 
receives for this portal. 

4.2 Network Management Interface 

This section describes the interface used to control and observe 
operation of the DNA Ethernet Data Link. The Network Management 
Interface enables and disables channels and monitors the events and 
counters that provide information on network operation. 

The Network Management Interface contains the following functions: 

. Read-channel -- read channel status. 

. Read-portal-list -- read list of open portals. 



Interfaces Page 26 

. Read-portal -- read information for a portal. 

. Reset -- reset the channel to initial state. 

. Set-address -- set channel physical address. 

. Enable-channel -- enable channel operation. 

. Disable-channel -- disable channel operation. 

. Read-counters -- read channel or portal counters. 

. Read-event -- read channel event. 

The Read-channel function reads status information relative to a 
specified channel. 

Inputs: 

-Channel-id - the unique identification of a channel for which 
status is to be read. 

outputs: 

Return-code - the status of the request. One of: 

Success - status successfully read. 

Unrecognized channel - there is no channel with th.e 
specified identification. 

Physical-address - the physical address of the channel or "not 
set". This is the address that the channel is 
currently using. 

Hardware-address - the hardware address of the channel or "not 
available1'. This is the address associated with the 
channel hardware. 

State - the channel state as described earlier, one of: 
On 
Off 
Init 
Broken 

Broken-code - an implementation-specific value indicating the 



Interfaces 

reason the state is "broken". 

Page 27 

4 .2 .2  Read-portal-list 

The Read-portal-list function reads the list of open portal 
ident if icai ions. 

Inputs: 

Channel-id - the unique identification of a channel for which 
open portal list is to be read. 

Buffer - a buffer to contain the list of portals. 

outputs: 

Return-code - the status of the request. One of: 

Success - list successfully read. 

Buffer too small - the buffer could not hold 
entire list. Portal identifications that would 
fit in the buffer are not returned. 

Unrecognized channel - there is 
specified identification. 

Buffer - descriptor of buffer containing 
identifications. 

The Read-portal function reads portal d,ata base 
portal. 

no channel with 

the 

the 
not 

the 

list of 

information 

portal 

for a 

READ-PORTAL(Porta1-idIBufferI~eturn-code) 

Inputs: 

Portal-id - the portal identification of the open portal for which 
the data base is to be read. 

Buffer - descriptor of a buffer to contain the portal data base 
information. 



Interfaces Page 28 

Outputs: 

Return-code - the status of the request. One of: 

Success - portal data base successfully read. 

Buffer too small - the buffer could not hold all 
the information. Information that would not fi t  in 
the buffer is not returned. 

Unrecognized channel - there is no channel with the 
specified identification. 

Buffer - descriptor of a buffer containing the portal data base 
informat ion. Each parameter entry contains the 
following information: 

Parameter-type - the identification of the 
particular portal data base parameter. The 
parameters are listed in the Portal Data Base 
operation section. 

Value - the parameter value. 

4.2.4 Reset 

The Reset function returns the specified channel to initial state. 
The physical address is unset. The counters are zeroed. ~ l l  portals 
are closed. The channel state is "off". 

Inputs: 

Channel-id - the unique identification of the channel that is to 
be reset. 

Outputs: 

Return-code - the status of the request. One of: 

Success - channel reset. 
Unrecognized channel - there is no channel with the 
specified identification. 

The Set-address function sets the physical address of the specified 
channel. This is the address recognized as specific destination in 



Interfaces Page 29 

received frames and sent as source address in transmitted frames. 

This function is necessary for a system that wants to use the same 
physical address on multiple different cables or has a physical 
address that is obtained completely independently of the data link. 

Inputs: 

Channel-id - the unique identification of the channel for which 
the address is to be set. This must be a physical 
address. Furthermore, it must be unique among all 
channels attached to the same cable. 

Address - the address to set. 

Outputs: 

Return-code - the status of the request. One of: 

Success - the address was successfully set. 

Unrecognized channel - there is no channel with the 
specified identification. 

Channel not off - the function failed because the 
channel state is not "off". 

The Enable-channel function attempts to put the channel into a state 
where it can be used. 

Enabling the channel does not disturb the contents of counter 
variables. 

. Inputs: 

Channel-id - the unique identification of the channel to be 
enabled. 

. . 

Outputs: 

Return-code - the status of the request. One of: 

Success - Channel is enabled. A channel that is 
enabled is not necessarily usable. The user can 
determine the actual state of the channel with the 



Interfaces Page 30 

Read-channel function. 

Address not set - the physical address for the 
channel has not been set. 

Unrecognized channel - there is no channel with the 
specified identification. 

The Disable-channel function puts the channel into the "off" state so 
that it cannot be used. The purpose of this function is to halt 
operation. The channel can still be observed. In particular counters 
and other data base information not directly related to state change 
operation is not disturbed. 

All outstanding transmit and receive operations for the channel are 
completed with a return code of "channel left on state" on the 
Receive-poll or Transmit-poll. 

Inputs: 

Channel-id - the unique identification of the channel to be 
disabled. 

Outputs: 

Return-code - the status of the request. One of: 

Success - channel is disabled. 

Unrecognized channel - there is no channel with the 
specified identification. 

The Read-counters function reads and optionally sets all counters 
associated with the specified channel or portal to zero. 

Inputs: 

Entity-id - the unique identification of the particular channel or 
portal for which counters are to be read. 

Operation - the data link performs one of the following 



Interfaces 

operations: 

Read - only read the counters. 

Page 31 

Read-and-zero - read the counters and set 
zero. 

Buffer - descriptor of a buffer to receive the counters. 

Outputs: 

Return-code - the status of the request. One of: 

Success - counters read (and set to 
requested). 

Unrecognized entity - there is no channel 
with the specified identification. 

them 

zero 

or portal 

Buffer too small - the buffer was too small to hold 
all the counter information. The information is 
truncated. Information that would not fit is lost. 
If read-and-zero was requested, all the counters 
are set to zero even if their values were not 
returned. 

Buffer - descriptor of buffer containing counters. Each counter 
entry contains the following information: 

Counter-type - the identification of the particular 
counter. The counters are listed in the Network 
Management Information section. 

Value - the counter value. 
Causes - specific reasons the counter was 
incremented. Some counters may be incremented for 
one or more reasons. For example, the data errors 
inbound counter can be incremented because of block 
check errors or framing errors. 

The Read-event function reads the next event from the event buffer 
associated with the specified channel and removes that event from the 
queue. 

Only one event at a time need be buffered. The higher level must poll 
the event buffer often enough to avoid an excessive number of lost 
events. 



Interfaces Page 32 

Inputs: 

Channel-id - the unique identification of the channel for which an 
event is to be read. 

Buffer - descriptor of a buffer to receive the event. 

Outputs: 

Return-code - the status of the request. One of: 

Success - event read with no problems. 

Buffer too small - the buffer was not big enough to 
contain the entire event. The information is 
truncated. Information that would not fit is lost. 

No events - the queue is empty. 

Unrecognized channel - there is no channel with the 
specified identification. 

Events-lost - the number of events that were lost since the last 
Read-event. 

Buffer - descriptor of buffer containing event. The event 
includes the following information: 

Event-type - the identification of the event. The 
events and their parameters are listed in the 
Network Management Information section. 

Event-parameters - the parameters associated with 
the event. Each event parameter entry includes the 
following information: 

Parameter-type - the identification of the 
parameter. 

Value - the value of the parameter. 

4.3 Ethernet Interfaces 

This section summarizes the Ethernet interfaces on which DNA Ethernet 
Data Link depends. For a complete description of the Ethernet 
interfaces, refer to the Digital, Intel, Xerox Ethernet Specification, 
Version 2.0. This section only contains those functions that relate 
directly to the operation of the DpA Ethernet Data Link. 

The Ethernet specification uses Pascal as its representation language. 
That notation is reproduced here to the minimum extent necessary to 
recognize functions between the specifications. This is not intended 
to be a complete description of the Ethernet interfaces. 



Interfaces Page 33 

Most of the Ethernet interface functions return a status as the value 
of the function. 

4.3.1 Client to Data Link Interface 

The Client to Data Link Interface is the one used by the DNA Ethernet 
Data Link to transmit and receive frames. It contains the following 
functions: 

. TransmitFrame - send a frame. 

. ReceiveFrame - receive a frame. 

4.3.1.1 TransmitFrame 

TransmitFrame sends a frame. It does not return until the transmit 
either succeeds or fails. 

TransmitFrame (destinationParam,sourceParam,typeParam,dataParam) 

Inputs: 

destinationparam - address of the destination system. 

sourceparam - physical address of the local system. 

typeparam - protocol type for the frame. 

dataparam - data to go in the frame. 

Outputs: 

TransmitFrame - the status of the operation. One of: 

transmitOK - frame successfully transmitted. 

excessiveCollisionError - transmission failed. 

4.3.1.2 ReceiveFrame 

ReceiveFrame receives a frame. It does not return until a frame is 
received. 

ReceiveFrame (destination~aram,sourceParam,typeParam,data~aram) 



Interfaces Page 34 

Inputs: none. 

Outputs: 

ReceiveFrame - the status of the operation. One of: 

receiveOK - frame successfully received. 

frameCheckError - frame block check failed. 

alignmentError - frame did not contain an integral 
number of bytes. 

destinationparam - address of the destination system. 

sourceparam - physical address of the remote system. 

typeparam - protocol type from the frame. 

dataparam - data from the frame. 

4.3.2 Network Management to Data Link Interface 

The Network Management to Data Link Interface is the one used by DNA 
Ethernet Data Link for network management information and control 
access to the DNA Ethernet Data Link. It contains the following 
functions: 

. ReadEthernetAddress - read the physical address. 

. ReadNumberCollisions - read the number of collisions for the last 
TransmitFrame. 

. DataLinkOn - start data link operation. 

, DataLinkOff - stop data link operation. 

. SetAddressMode - changes addressing mode between normal and 
promiscuous. 

. Multicaston - enable reception of multicast addresses. 

. Multicastoff - disable reception of multicast addresses. 

4.3.3 Network Management to Physical Link Interface 

The Network Management to Physical Link Interface is the one used by 
the DNA Ethernet Data Link for network management information and 
control access to the Ethernet Physical Link. It contains the 
following function: 



Interfaces Page 35 

checks status of last TransmitFrame. 

5 NETWORK MANAGEMENT INFORMATION 

I This section describes the counters and events that the DNA Ethernet 
Data Link provides for the Network Management layer. Each description 
contains a conceptual definition of the information and a statement of 
its use. Precise operational definitions are in the Operation 
section. 

5.1 Counters 

The following counters are kept for each Ethernet channel. Some of 
them are also kept for portals. Counters are unsigned integers. All 
counters remain at their maximum value to indicate overflow. 

Unless otherwise stated, all counters include both normal and 
multicast traffic. Furthermore, they include information for all 
protocol types. Frames received and bytes received counters do not 
include frames received with errors. 

The following table contains the names and bit lengths of all the 
counters: 

Length Name 

The following 

Seconds since last zeroed 
Bytes received 
Bytes sent 
Frames received 
Frames sent 
Multicast bytes received 
Multicast frames received 
Frames sent, initially deferred 
Frames sent, single collision 
Frames sent, multiple c,ollisions 
Send failure * 
Collision detect check failure 
Receive failure * 
Unrecognized frame destination 
Data overrun 
System buffer unavailable 
User buffer unavailable 

* Counter has multiple causes 

counters are kept for each portal: 

Seconds since last zeroed 
Bytes received 
Bytes sent 
Frames received 



Network Management Infromation Page 36 

Frames sent 
User buffer unavailable 

. Seconds since last zeroed 

The number of seconds since the counters were last zeroed. The 
length is 16 bits. 

Provides a frame of reference for the other counters by 
indicating the amount of time they cover. 

. Bytes received 

The total number of user data bytes successfully received. This 
does not include Ethernet data link headers. This number is the 
number of bytes in the Ethernet data field, which includes any 
padding or length fields when they are enabled. The length is 32 
bits. These are bytes from frames that passed hardware 
filtering. 

When the number of frames received is used to calculate protocol 
overhead, the overhead plus bytes received provides a measurement 
of the amount of Ethernet bandwidth (over time) consumed by 
frames addressed to the local system. 

. Bytes sent 

The total number of user data bytes successfully transmitted. 
This does not include Ethernet data link headers or data link 
generated retransmissions. This number is the number of bytes in 
the Ethernet data field, which includes any padding or length 
fields when they are enabled. The length is 32 bits. 

When the number of frames sent is used to calculate protocol 
overhead, the overhead plus bytes sent provides a measurement of 
the amount of Ethernet bandwidth (over time) consumed by frames 
sent by the local system. 

. Frames received 

The total number of \frames successfully received. The length is 
32 bits. These are frames that passed hardware filtering. 

Provides a gross measurement of incoming Ethernet usage by the 
local system. Provides information used to determine the ratio 
of the error counters to successful transmits. 

. Frames sent 

The total number of frames sqccessfully transmitted. This does 
not include data link generated retransmissions. The length is 
32 bits. 



Network Management Infromation Page 37 

Provides a gross measurement of outgoing Ethernet usage by the 
local system. Provides information used to determine the ratio 
of the error counters to successful transmits. 

. Multicast bytes received 

The total number of multicast data bytes successfully received. 
This does not include Ethernet data link headers. This number is 
the number of bytes in the Ethernet data field. The length is 32 
bits. 

In conjunction with total bytes received, provides a measurement 
of the percentage of this system's receive bandwidth (over time) 
that was consumed by multicast frames addressed to the local 
system. 

. Multicast frames received 

The total number of multicast frames successfully received. The 
length is 32 bits. 

In conjunction with total frames received, provides a gross 
percentage of the Ethernet usage for multicast frames addressed 
to this system. 

. Frames sent, initially deferred 

The total number of times that a frame transmission was deferred 
on its first transmission attempt. The length is 32 bits. 

In conjunction with total frames sent, measures Ethernet 
contention with no collisions. 

. Frames sent, single collision 

The total number of times that a frame was successfully 
transmitted on the second attempt after a normal collision on the 
first attempt. The length is 32 bits. 

In conjunction with total frames sent, measures Ethernet 
contention at a level where there are collisions but the backoff 
algorithm still operates efficiently. 

. Frames sent, multiple collisions 

The total number of times that a frame was successfully 
transmitted on the third or later attempt after normal collisions 
on previous attempts. The length is 32 bits. 

In conjunction with total frames sent, measures Ethernet 
contention at a level where there are collisions and the backoff 
algorithm no longer operates efficiently. 



Network Management Infromation 

NOTE 

No single frame is counted in more than one of 
the above three counters. 

. Send failures 

The total number of times a transmit attempt failed. The length 
is 16 bits. Each time the counter is incremented, a type of 
failure is recorded. When Read-counter function reads the 
counter, the list of failures is also read. When the counter is 
set to zero, the list of failures is cleared. 

In conjunction with total frames sent, provides a measure of 
significant transmit problems. All of the problems reflected in 
this counter are also captured as events. 

Following are the possible failures. More information on their 
meanings and use can be found in the section on events. 

Excessive collisions 
Carrier check failed 
Short circuit 
Open circuit 
Frame too long 
Remote failure to defer 

. Collision detect check failure 

The approximate number of times that collision detect was not 
sensed after a transmission. The length is 16 bits. 

If this counter contains a number roughly equal to the number of 
frames sent, either the collision detect circuitry is not working 
correctly or the test signal is not implemented. 

. Receive failures 

The total number of frames received with some data error. 
Includes only data frames that passed either physical or 
multicast address comparison. The length is 16 bits. This 
counter includes failure reasons in the same way as the send 
failure counter. 

In conjunction with total frames received, provides a measure of 
data related receive problems. All of the problems reflected in 
this counter are also captured as events. 

Following are the possible reasons. More information on their 
meaning and use can be found in the section on events. 

Block check error 
Framing error 
Frame too long 



Network Management Infromation Page 39 

. Unrecognized frame destination 

The number of times a frame was discarded because there was no 
portal with the protocol type or multicast address enabled. This 
includes frames received for the physical address, the broadcast 
address, or a multicast address. The length is 16 bits. 

. Data overrun 

The total number of times the hardware lost an incoming frame 
because it was unable to keep up with the data rate. 

In conjunction with total frames received, provides a measure of 
hardware resource failures. The problem reflected in this 
counter is also captured as an event. 

. System buffer unavailable 

The total number of times no system buffer was available for an 
incoming frame. The length is 16 bits. 

In conjunction with total frames received, provides a measure of 
system buffer related receive problems. The problem reflected in 
this counter is also captured as an event. 

This can be any buffer between the hardware and the user buffers 
(those supplied on Receive requests). Further information as to 
potential different buffer pools is implementation specific. 

. User buffer unavailable 

The total number of times no user buffer was available for an 
incoming frame that passed all filtering. These are the buffers 
supplied by users on Receive requests. The length is 16 bits. 

In conjunction with total frames received, provides a measure of 
user buffer related receive problems. The problem reflected in 
this counter is also captured as an event. 

5.2 Events 

The following events are recorded for each channel. Such information 
as channel identification, date, and time are assumed to be added as 
needed by higher layers. 

The event descriptions include a conceptual definition of the event 
and an explanation of its use. Precise operational event definitions 
are in the Operation section. 

Events are recorded regardless of protocol type. 



Network Management Infromation 

NOTE 

Page 40 

Since some events can occur very rapidly, 
implementations must take care that main line 
processing is not pre-empted by event processing. 

. Initialization failed 

This event is logged when the self test at initialization fails. 
The procedures in the self test are implementation dependent, but 
include such things as internal hardware loop testing. This 
event is optional on channels that cannot fail in initialization. 

When this event is logged, it includes an implementation specific 
value that indicates the reason for the failure. 

Provides notification that the channel is incapable of operating. 

. Send failed 

This event is logged for any error in transmitting a frame. The 
reason for the error is included, followed by any other pertinent 
data. The possible reasons are: 

Excessive collisions 

Exceeded the maximum number of retransmissions due to 
collisions. 

Indicates an overload condition on the Ethernet. Too 
many systems are trying to transmit at the same time. 

Carrier check failed 

The data link did not sense the receive signal that is 
required to accompany the transmission of a frame. 

Indicates a failure in either transmitting or receiving 
hardware. Could be either transceiver or transceiver 
cable related. Could be caused by a babbling controller 
that has been cut off. 

Short circuit 

There is a short somewhere in the local area network 
coaxial cable, or the transceiver or 
controller/transceiver cable failed. When this reason is 
logged, an estimated distance to the failure, in bit 
times, is included. 

This indicates a problem either in the local hardware or 
a global network problem. The two can be distinguished 
by checking to see if other systems are reporting the 
same problem. 



Network Management Infromation Page 41 

Open circuit 

There is a break somewhere in the local area network 
coaxial cable. When this reason is logged, an estimated 
distance to the failure, in bit times, is included. 

This indicates a problem either in the local hardware or 
a global network problem. The two can be distinguished 
by checking to see if other systems are reporting the 
same problem. 

Frame too long 

The controller or transceiver cut off transmission at the 
maximum size. 

This indicates a problem with the local system: either 
it tried to send a frame that was too long, or the 
hardware cut off transmission too soon. 

Remote failure to defer 

A remote system began transmitting after the allowed 
window for collisions. 

This indicates either a problem with some other system's 
carrier sense or a weak transmitter locally. 

. Collision detect check failed 

This event is logged when the data link did not sense the 
collision signal that is supposed to follow the transmission 
of a frame. 

Indicates a failure either in the transceiver or transceiver 
cable collision circuitry. 

. Receive failed 

This event is logged for any error in receiving a frame. The 
reason for the error is included, followed by the source and 
destination physical addresses, the protocol type, and any other 
pertinent data as defined for the specific event, if available. 

The possible reasons are: 

Block check error 

The frame failed the CRC check. 

This indicates several possible failures. It can be 
caused by such things as electromagnetic interference, 
late collisions, or improperly set hardware parameters 
(such as receiver squelch). 



Network Management Infromation Page 42 

Framing error 

The frame did not contain an integral number of 8 bit 
bytes. 

This indicates several possible failures. It can be 
caused by such things as electromagnetic interference, 
late collisions, or improperly set hardware parameters 
(such as receiver squelch). 

Data overrun 

The frame was lost due to a hardware resource failure. 

This indicates, for example, insufficient hardware 
buffers or CPU time. 

System buffer unavailable 

The frame was discarded because there was no system 
buffer available to receive it. 

This indicates a lack of buffers in the local system. 
This can be any buffer between the cable and the user 
buffers (those supplied by the user in the Receive 
function). Further information as to potential different 
buffer pools is implementation specific. 

User buffer unavailable 

The frame was discarded because there was no user buffer 
available to receive it. 

This indicates a lack of buffers in the user process. 
These are the buffers supplied by the user in the Receive 
function. 

Unrecognized frame destination 

The frame was discarded because there was no portal with 
either the protocol type or the multicast address 
enabled. This includes frames received for the physical 
address, the broadcast address, or a multicast address. 

This indicates either that the local system has not 
enabled a protocol type or multicast address that it 
should or that a remote system is attempting to use a 
protocol that is locally unsupported. 

Frame too long 

The frame was discarded because it was outside the 
Ethernet maximum length and could not be received. 



Network Management Infromation Page 43 

This indicates that a remote system is sending invalid 
length frames. 

6 INTERFACE USAGE EXAMPLES 

i This section contains examples of how the user interface might be 
used. The intent is to motivate the functions and to show how they 
might interrelate. This section does not specify how the interfaces 
must be used. 

6.1 Portal Filter Setup 

This example opens a portal and sets up its receive filter criteria. 
The portal wishes to receive frames of protocol types PI and P2 that 
are addressed to the physical address and multicast address Ml. 

Open(Channe1-id,Return-code,Portal-id) 
IF Return-code = "success1' 

~nable-protocol(Porta1-id,PI,Return-code) 
IF Return-code = "suc~ess'~ 

Enable-protocol(Porta1-idfP2,Return-code) 
IF Return-code = "suc~ess'~ 

~nable-multicast(Porta1-id,Ml,Return-code) 
ENDIF 

ENDIF 
END I F 
IF Return-code = "success11 

{use the data link] 
~lose(~orta1-id,Return-code) 

ELSE 
{Handle error] 

ENDIF 

6.2 Data Error Diagnostic 

In this case, the data link is to be used by a diagnostic program 
that has a direct interest in the characteristics of incorrectly 
received messages. It wishes to supply its own cyclic redundancy 
code, find what code was received from the other end, and be able to 
analyze the bit patterns in damaged frames. Using these features it 
can test some of the data handling within both the local and the 
remote sides of the data link. 

It accomplishes this by using the options on the Transmit, Receive, 
and Receive-poll functions that allow it to meet its task specific 
needs. 



Operat ion Page 44 

7 OPERATION 

The bulk of the detailed operation of Ethernet is found in the 
Ethernet Specification, Version 2.0, and is not repeated here. This 
section specifies the operation of those functions that are additions 
to the Ethernet base. The operations specified here are portal 
handling and transmit/receive handling, which includes recording of 
counters and events. 

This section uses a model implementation to describe DNA Ethernet 
Data Link operation. Implementations are not required to implement 
this model, but must be functionally equivalent. For example, a 
counter kept by one implementation must be incremented according to 
exactly the same criteria as the same counter in any other. 

The model implementation is modularized according to the following 
diagram: 

The Portal Handler maintains the Portal Data Base according to user 
requests through the User Interface. The Portal Handler communicates 
with the Transmitter and Receiver through the Portal Data Base. The 
Transmitter and Receiver send and receive frames through the DNA 
Ethernet Data Link User Interface and maintain counter and event 
information in the Management Data Base. 

This specification assumes the mutual exclusion necessary to keep 
shared data bases correct. 

The Portal Data Base contains an entry for each open portal. Each 
entry contains: 



Operat ion Page 45 

. Channel identification. 

. Count of lost frames. 

. Pad flag. 

. List of enabled protocol types. 

. List of enabled multicast addresses. 

. List of outstanding Transmits, each list entry includes: 

- Request state, set to "pending" by the Portal Handler and 
"complete" by the Transmitter. 

- Destination address supplied by the user for the frame. 

- Protocol type supplied by the user for the frame. 

- Input buffer with the user's data to send in the frame. 

- Return code returned by the Transmitter. 

- CRC-32 optionally supplied by the user for the frame. If 
not user-supplied, the DNA Ethernet Data Link will supply 
it. 

- Error detail returned by the Transmitter if applicable 
and desired by the user. 

- Fault distance returned by the Transmitter if applicable 
and desired by the user. 

. List of outstanding Receives, each list entry includes: 

- Request state, set to "pending" by the Portal Handler and 
"complete" by the Receiver. 

- Output buffer supplied by the user for a received frame. 

- Indicator whether user wants frames with invalid data. 

- Return code returned by the Receiver. 

- Error detail returned by the Receiver if applicable and 
desired by the user. 

- Destination address returned from the received frame by 
the Receiver. 



Operat ion Page 46 

- Source address returned from the received frame by the 
Receiver. 

- Protocol type returned from the received frame by the 
Receiver. 

- Bytes lost returned by the Receiver if applicable and 
desired by the user. 

- CRC-32 returned from the received frame by the Receiver 
if desired by the user. 

7.1 Portal Handler 

This section describes Portal Handler operation relative to the User 
Interface functions. The Portal Handler functions are: 

Open 
~nable-promiscuous 
  is able-promiscuous 
Enable-protocol 
Disable-protocol 
Enable-multicast 
 isa able-multicast 
Close 
Transmit 
Transmit-poll 
Receive 
Receive-abort 
Receive-poll 

7.1.1 Open 

When the user calls Open, if the implementation allows only one 
promiscuous receiver, the Portal Handler checks to see if one is 
active. If so, it returns llpromiscuous receiver active" . 
If there is no promiscuous receiver problem, the Portal Handler 
checks that it has the necessary resources to open a new portal. If 
not, it returns "no resources". 

If resources are available, the Portal Handler checks to see if the 
requested channel exists. If not, it returns "unrecognized channel". 

If the channel exists, the Portal Handler checks to see if it is on. 
If not, it returns "channel not onn. 



Operat ion Page 47 

If  the channel is on, the Portal Handler initializes the portal data 
base with the pad flag, empty lists, and the channel identification 
and returns "success" and the portal identification. 

When the user calls Enable-promiscuous, the Portal Handler checks to 
see if the supplied portal identification identifies an open portal. 
If not, it returns "unrecognized portal". 

If the portal is open, the Portal Handler does one of the following: 

. Returns "not implemented". 

. Or checks to see if any other portal is open or this one has 
any protocol types or multicast addresses enabled and if so 
it returns "non-exclusive". 

. Or accepts the fact that for this portal it will have to 
duplicate messages that other portals receive. 

If the Portal Handler can allow promiscuous receive, it enables 
promiscuous addressing through the DNA Ethernet Data Link. I f  this 
fails, it returns "channel in wrong state". Otherwise it puts 
'promiscuous" in the portal's list of enabled protocol types and 
returns "success''. 

When the user calls Disable-promiscuous, the Portal Handler checks to 
see if the supplied portal identification identifies an open portal. 
If not, it returns "unrecognized portal". 

I f  the portal is open, the Portal Handler checks the portal's list of 
protocol types for "promiscuous". If not found, it returns 
success". 

If the portal is receiving promiscuously, the Portal Handler scans 
all other portals to see if any others are receiving promiscuously 
(if the implementation allows multiple promiscuous receivers). If 
none are found, the Portal Handler disables promiscuous addressing 
through the DNA Ethernet Data Link. The Portal Handler then returns 
"success". 



Operat ion Page 48 

When the user calls Enable-protocol, the Portal Handler checks to see 
if the supplied portal identification identifies an open portal. If 
not, it returns "unrecognized portal". 

If 'the portal is open, the Portal Handler checks to see if it has 
resources to record another protocol type for this portal. If not, 
it returns "no resources". 

If the Portal Handler has resources, it scans all portals to see i f  
any of them have the protocol type enabled. If so, it returns 
"protocol type in use". 

If the protocol type is available, the Portal Handler checks to see 
if the portal's channel is on. If not, it returns "channel not on". 

If the channel is on, the Portal Handler puts the protocol type in 
the portal's list and returns "success". 

When the user calls Disable-protocol, the Portal Handler checks to 
see if the supplied portal identification identifies an open portal. 
If not, it returns "unrecognized portal". 

If the portal is open, the Portal Handler checks to see if the 
protocol type is in the portal's list. If it is, the Portal Handler 
removes it. The Portal Handler then returns "success". 

When the user calls Enable-multicast, the Portal Handler checks to 
see if the supplied portal identification identifies an open portal. 
If not, it returns "unrecognized portaln. 

I 

If the portal is open, tihe Portal Handler checks to see if it has 
resources to record another multicast address for this portal. If 
not, it returns "no resources". 

If the Portal Handler has resources, it checks to see if the portal's 
channel is on. If not, it returns "channel not on". 

<If the channel is on, the Portal Handler puts the multicast address 
in the portal's list. If this is the first multicast address 
enabled, the Portal Handler calls the DNA Ethernet Data Link to 
enable multicast. The Portal Handler then returns "success". 



Operat ion Page 49 

When the user calls Disable-multicast, the Portal Handler checks to 
see if the supplied portal identification identifies an open portal. 
If not, it returns "unrecognized portalw. 

If the portal is open, the Portal Handler checks to see if the 
1 multicast address is in the portal's list. If it is, the Portal 

Handler removes it. If this was the only multicast address enabled, 
the Portal Handler calls the DNA Ethernet Data Link to disable 
multicast. The Portal Handler then returns "success". 

7.1.8 Close 

When the user calls Close, the Portal Handler checks to see if the 
supplied portal identification identifies an open portal. If not, it 
returns "unrecognized portal". 

If the portal is open, the Portal Handler checks to see if the 
portal's transmit and receive lists are empty. If they are not, it 
returns "Calls outstanding". 

If the portal's transmit and receive lists are empty, the Portal 
Handler releases all resources for the portal and returns "suc~ess'~. 

7.1.9 Transmit 

When the user calls Transmit, the Portal Handler checksto see if the 
supplied portal identification identifies an open portal. If not, it 
returns "unrecognized portal". 

If the portal is open, the Portal Handler checks to see if it has 
resources to queue a transmit for the portal. If it does not, i,t 
returns "no resources". 

If the Portal Handler has resources, it checks to see if the portal's 
channel is on. If it is not, it returns "channel not onw. 

If the portal's channel is on, the Portal Handler transfers the 
information from the call into the portal's transmit list, marked 

Ã "pendingw, for action by the Transmitter. The Portal Handler then 
returns "request accepted". 

When the user calls Transmit-poll, the Portal Handler checks to see 
if the supplied portal identification identifies an open portal. If 
not, it returns "unrecognized portal". 



Operat ion Page 50 

If the portal is open, the Portal Handler checks the transmit list to 
see if it is empty. If so, it returns "none outstanding". 

If the transmit list is not empty, the Portal Handler checks to see 
if the first request state is "complete". If not, it returns "not 
complete". 

If the first request is complete, the Portal Handler gets the output 
parameters from the list for return. The Portal handler then 
deallocates the transmit list entry and returns the output 
parameters. 

7.1.11 Receive 

When the user calls Receive, the Portal Handler checks to see if the 
supplied portal identification identifies an open portal. If not, it 
returns "unrecognized portal". 

If the portal is open, the Portal Handler gets the portal's count of 
frames lost and zeros its own record of the count. The Portal 
Handler then checks to see if it has resources to queue a receive for 
the portal. If it does not, it returns "no resources" and the frames 
lost count. 

If the Portal Handler has resources, it checks to see if the portal's 
channel is on. If it is not, it returns "channel not on" and the 
frames lost count. 

If the portal's channel is on, the Portal Handler transfers the 
information from the call into the portal's receive list, marked 
"pending", for action by the Receiver. The Portal Handler then 
returns "request accepted" and the frames lost count. 

When the user calls Receive-abort, the Portal Handler checks to see 
if the supplied portal identification identifies an open portal. If 
not, it returns "unrecognized portal". 

If the portal is open, the Portal Handler checks the receive list to 
see if it is empty. If so, it returns "none outstandingw. 

If the receive list is not empty, for each entry, the Portal Handler 
checks to see if the entry state is "completen. If not, it marks the 
request "complete", and sets the return code to "receive aborted". 
The Portal Handler then returns "successn. 



Operat ion Page 51 

When the user calls Receive-poll, the Portal Handler checks to see if 
the supplied portal identification identifies an open portal. If 
not, it returns "unrecognized portal". 

If the portal is open, the Portal Handler checks the receive list to 
I see if it is empty. If so, it returns "none outstanding". 

If the receive list is not empty, the Portal Handler checks to see i f  
the first request state is "complete". If not, it returns "not 

I complete". 

If the first request is complete, the Portal Handler gets the output 
parameters from the list for return. The Portal handler then 
deallocates the receive list entry and returns the output parameters. 

7.2 Transmitter and Receiver 

7.2.1 Transmitter 

The Transmitter constantly scans the the transmit lists for all open 
portals for the first pending request. Whenever it finds one marked 
"pending" it uses the information from that entry to send the frame. 

If the pad flag for the portal indicates that padding is enabled, the 
Transmitter prefixes the user's data with two bytes containing the 
length of the data as indicated by the user, low order byte first. 
If the resulting data is less than the Ethernet minimum, the 
Transmitter adds bytes of zeroes at the end of the user data to pad 
out to minimum length. 

The Transmitter then uses the DNA Ethernet Data Link to send the 
frame. When this request completes, the transmitter records the 
necessary completion information in the portal's transmit list entry 
and marks it "complete". The Transmitter then continues its scan 
with the next portal. 

7.2.2 Receiver 

This operational description assumes that Receiver operation is fast 
enough to receive all frames received by the DNA Ethernet Data Link. 
Implementations that are not fast enough will have to be able to 
record frames lost due to no buffer. 

This description also assumes the most complex form of protocol type 
matching. This is the form in which multiple users are allowed to 
receive promiscuously regardless of protocol types enabled by other 
users. The simpler cases are direct subsets of this case. 



Operat ion Page 52 

The Receiver has at least one Ethernet maximum size receive buffer of 
its own. The Receiver always tries to keep an Ethernet receive 
outstanding. 

When a frame is received, the Receiver scans the open portals for a 
matching receiver. It checks the protocol type list first. If it 
finds -a match here it may then check the multicast address list. If 
no match in the protocol type list, it goes on to the next portal. A 
receiver matches if one of the following is true: 

. The protocol type matches and the frame destination is the 
physical address or the broadcast address. 

. The protocol type matches and the multicast destination is in the 
portal's multicast address list. 

. The portal protocol type list indicates promiscuous. 

If the Receiver finds a match it checks the portal's receive list for 
the first pending request. If it does not find one it increments the 
portal's frames lost count and the total user buffer unavailable 
count, then proceeds as if it had completed giving the frame to the 
portal. 

If the Receiver finds a pending receive, it copies the pertinent 
information into the 'portal's receive list according to the user's 
desires. For example it copies in a frame with invalid data (e.g. 
bad CRC) if the user requested this type of receive. 

If the pad flag is set, the Receiver uses the first two bytes of the 
data as the received length and copies that amount into the user's 
buffer, not including the first two bytes. If the actual length of 
the data in the frame is less than the amount indicated by the first 
two bytes, the Receiver gives the user all of the data, including the 
first two bytes, and sets a "length error" return code. 

The Receiver then marks the receive "complete". 

The Receiver repeats this procedure until it has checked all open 
portals. 

7.2.3 Counters 

This section defines exactly when the data link increments counters. 
All counters operate the same with respect to overflow. Whenever a 
counter reaches maximum value for. its length it remains at that value 
until the counters are set to zero. This operation is assumed in all 
of the following descriptions of when counters are incremented. All 
counters are cleared simultaneously. 



Operat ion Page 53 

NOTE 

The names used in the Ethernet Version 2.0 
specification are indicated in parentheses. A more 
formal description of their operation can be found in 
the Pascal procedural model found in that 
specification. 

. Seconds since last zeroed (not specified in Ethernet V2.0) 

This counter is incremented once every second. It allows the 
counters to be maintained for about 18 hours without being read. 

. Bytes received (not specified in Ethernet V2.0) 

This counter is updated every time a frame is received with no 
errors (framesReceivedNoErrors). It is incremented by the number 
of bytes in t h e  Ethernet data field of the received frame 
(datasize). 

. Bytes sent (not specified in Ethernet V2.0) 

This counter is updated every time a frame is transmitted with no 
errors (frameSentNoErrors). It is incremented by the number of 
bytes in the Ethernet data field of the transmitted frame 
(datasize). 

. Frames received (frames~eceivedNoErrors) 

This counter is incremented by one every time a frame is received 
with no errors. 

. Frames sent (framesSentNoErrors) 

This counter is incremented by one every time a frame is 
transmitted with no errors. 

. Multicast bytes received (not specified in Ethernet V2.0) 

This counter is updated every time a frame is received for a 
multicast address with no errors (framesReceivedNoError and 
address[l] = 1). It is incremented by the number of bytes in the 
Ethernet data field of the received frame (datasize). 

. Multicast frames received (not specified in Ethernet ~2.0) 

This counter is incremented by one every time a frame is received 
for a multicast address with no errors (framesReceivedNoError and 
addressCl1 = 1). 

. Frames sent, initially deferred (not specified in Ethernet ~2.0) 



Operat ion Page 54 

This counter is incremented by one every time a frame is 
transmitted with no errors after being initially deferred. It 
does not get incremented if a deferral takes place on a 
subsequent attempt to transmit after a collision if the first 
attempt was not deferred. 

. Frames sent, single collision (transmitOkOneCollision) 

This counter is incremented by one every time a frame is 
transmitted with no errors after a single collision and backoff 
sequence; i.e., successful on the second attempt. 

. Frames sent, multiple collisions (transmit~k~ultiple~ollisions) 

This counter is incremented by one every time a frame is 
transmitted with no errors after more than one collision and 
backoff sequence; i.e., successful on the third or subsequent 
attempt. 

. Send failures (not specified in Ethernet V2.0) 

This counter is incremented by one every time an error causes the 
termination of the transmission of a frame. This may be due to 
one or more of the following faults occurring during a single 
Data Link TransmitFrame operation. A flag is set to indicate 
which type of fault(s) has occurred. (Ethernet V2.0 specifies 
two separate 16-bit counters for frames~bortedLateCollision and 
framesAbortedExcessCollisions.) 

Excessive collisions (excessiveCollisionError) 
Carrier check failed (carrierSenseFailed) 
Short circuit 
Open circuit 
Frame too long 
Remote failure to defer (latecollision) 

. Collision detect check failures (collisionDetectFailed) 

This counter is incremented by one every time no collisionDetect 
signal is seen from the Physical Layer during a transmission or 
within 2 microseconds following the deassertion of carriersense 
after the end of transmission. 

. Receive failures (not specified in Ethernet V2.0) 

This counter is incremented by one every time an error causes an 
incoming frame to be lost. This may be due to one or more of the 
following faults occurring during a single Data Link ReceiveFrame 
operation. A flag is set to indicate which type of fault(s) has 
occurred. (Ethernet V2.0 specifies two separate 16-bit counters 
for framesReceivedCRCErrors and framesReceived~lignErrors) 

Block check error (frameCheckError) 
Framing error (alignmentError) 
Frame too long 



Operat ion Page 55 

. Unrecognized frame destinations (not specified in Ethernet V2.0) 

This counter is incremented by one every time a frame is received 
but discarded because there was no portal with the protocol type 
or multicast address enabled. 

. Data overruns (not specified in Ethernet ~ 2 . 0 )  

This counter is incremented by one every time an incoming frame 
is lost because the hardware was unable to keep up with the data 
rate. 

. System buffers unavailable (not specified in Ethernet V2.0) 

This counter is incremented by one every time a frame is received 
but discarded because there is no system buffer available. 

. User buffers unavailable (not specified in Ethernet V2.0) 

This counter is incremented by one every time a frame is received 
but discarded because there is no user buffer available. 

7.2.4 Events 

This section defines exactly when the data link records events. 

NOTE 

The names used in the Ethernet Version 2.0 
specification are indicated in parentheses. A more 
formal description of their operation can be found in 
the Pascal procedural model found in that 
specification. 

. Initialization failed (not specified in Ethernet V2.0) 

This event is logged whenever the self test at initialization 
fails. The operation of the self test is implementation 
specific. 

. Send failed (not specified in Ethernet V2.0) 

This event is logged every time an error causes the termination 
of the transmission of a frame. This may be due to one or more 
of the following faults occurring during a single Data Link 
TransmitFrame operation. 

Excessive collisions (excessive~ollision~rror) 
Carrier check failed (carriersense~ailed) 
Short circuit 
Open circuit 



Operat ion Page 56 

Frame too long 
Remote failure to defer (latecollision) 

. Collision detect check failed (collisionDetect~ailed) 

This event is logged every time no collisionDetect signal is seen 
from the Physical Layer during a transmission or within 2 
microseconds following the deassertion of carriersense after the 
end of transmission. 

. Receive failed 

This event is logged every time an incoming frame is lost. This 
may be due to one or more of the following faults occurring 
during or immediately after a Data Link ReceiveFrame operation. 

Block check error (frameCheckError) 
Framing error (alignmentError) 
Data Overrun 
System buffer unavailable 
User buffer unavailable 
Unrecognized frame destination 



APPENDIX A 

PROTOCOL TYPES AND MULTICAST ADDRESSES 

This appendix lists all the protocol types and multicast addresses 
defined for Digital Equipment Corporation or across companies. 
DIGITAL protocol types are in the range 60-00 through 60-09. DIGITAL 
physical and multicast addresses are in the range AA-00-00-00-00-00 
through AA-00-04-FF-FF-FF and AB-00-00-00-00-00 through 
AB-00-04-FF-FF-FF, respectively. 

A.1 CROSS-COMPANY ASSIGNMENTS 

The cross-company protocol type is: 

Value Meaning 
90-00 Loopbac k 

The cross-company multicast addresses are: 

Value Meaning 
FF-FF-FF-FF-FF-FF Broadcast 
CF-00-00-00-00-00 Loopback Assistance 

A.2 DIGITAL ASSIGNMENTS 

The DIGITAL protocol types are: 

Value 
60-00 
60-01 
60-02 
60-03 
60-04 
60-05 
60-06 
60-07 

Meaning 

DNA Dump/Load (MOP) 
DNA Remote Console (MOP) 
DNA Routing 
Local Area Transport (LAT) 
Diagnostics 
Customer use 
System Communication Architecture (SCA) 



PROTOCOL TYPES AND MULTICAST ADDRESSES Page A-2 

DNA Phase IV nodes have addresses in the range AA-00-04-00-00-00 
through AA-00-04-00-FF-FF (see DNA Routing Layer Functional 
Specification). 

The DIGITAL multicast addresses are: 

Value Meaning 
AB-00-00-01-00-00 DNA Dump/Load Assistance (MOP) 
AB-00-00-02-00-00 DNA Remote Console (MOP) 
AB-00-00-03-00-00 DNA Routing Layer routers 
AB-00-00-04-00-00 DNA Routing Layer end nodes 
AB-00-03-00-00-00 Local Area Transport (LAT) 
AB-00-04-00-00-00 thru 
AB-00-04-00-FF-FF Customer use 

AB-00-04-01-00-00 thru 
AB-00-04-01-FF-FF System Communication Architecture ( S C A )  



DECnet Digital Network Architecture Phase IV 
Ethernet Data Link Functional Specification 
AA-Y298A-TK 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the 
company's discretion. If you require a written reply and are eligible t o  receive one under Software 
Performance Report (SPR) service, submit your comments on an SPR form. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement. 

- - 

Did you find errors in this manual? If so, specify the error and the page number 

Please indicate the type of userlreader that you most nearly represent, 

Assembly language programmer 
D Higher-level language programmer 

Occasional programmer (experienced) 
User with little programming experience 
Student programmer 

0 Other (please specify) 

Name Date 

Organization 

Street 

City State Zip Code 
or 

Country 



I 
1 

- - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - - - - - I 
1 

Necessary - - - 1 BUSINESS REPLY MAIL 1 - 
I FIRST CLASS PERMIT NO33  MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE -I  
- 1  

SOFTWARE DOCUMENTATION - 1  
1925 ANDOVER STREET TW/E07 
TEWKSBURY, MASSACHUSETTS 01 876 

I 

. - -  Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - I 
- -7 



 






